Skip to main content

From Practice to Theory: The “Bright Illumination” Attack on Quantum Key Distribution Systems

  • Conference paper
  • First Online:
Theory and Practice of Natural Computing (TPNC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12494))

  • 324 Accesses

Abstract

The “Bright Illumination” attack [Lydersen et al., Nat. Photon. 4, 686–689 (2010)] is a practical attack, fully implementable against quantum key distribution systems. In contrast to almost all developments in quantum information processing (for example, Shor’s factorization algorithm, quantum teleportation, Bennett-Brassard (BB84) quantum key distribution, the “Photon-Number Splitting” attack, and many other examples), for which theory has been proposed decades before a proper implementation, the “Bright Illumination” attack preceded any sign or hint of a theoretical prediction. Here we explain how the “Reversed-Space” methodology of attacks, complementary to the notion of “quantum side-channel attacks” (which is analogous to a similar term in “classical”—namely, non-quantum—computer security), has missed the opportunity of predicting the “Bright Illumination” attack.

The work of T.M. and R.L. was partly supported by the Israeli MOD Research and Technology Unit, and by the Gerald Schwartz & Heather Reisman Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The notations are used for the standard qubit (in a two-dimensional Hilbert space).

References

  1. Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol. 5(1), 3–28 (1992). https://doi.org/10.1007/BF00191318

    Article  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: International Conference on Computers, Systems & Signal Processing, pp. 175–179 (1984)

    Google Scholar 

  3. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyer, M., Gelles, R., Mor, T.: Attacks on fixed-apparatus quantum-key-distribution schemes. Phys. Rev. A 90, 012329 (2014). https://doi.org/10.1103/PhysRevA.90.012329

    Article  MATH  Google Scholar 

  5. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000). https://doi.org/10.1103/PhysRevLett.85.1330

    Article  MATH  Google Scholar 

  6. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Security aspects of practical quantum cryptography. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 289–299. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_20

    Chapter  Google Scholar 

  7. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. P. Roy. Soc. Lond. A Mat. 400, 97–117 (1985). https://doi.org/10.1098/rspa.1985.0070

    Article  MathSciNet  MATH  Google Scholar 

  8. Gelles, R.: On the security of theoretical and realistic quantum key distribution schemes. Master’s thesis, Technion - Israel Institute of Technology, Haifa, Israel (2008)

    Google Scholar 

  9. Gelles, R., Mor, T.: Quantum-space attacks. arXiv preprint arXiv:0711.3019 (2007)

  10. Gelles, R., Mor, T.: Reversed space attacks. arXiv preprint arXiv:1110.6573 (2011)

  11. Gelles, R., Mor, T.: On the security of interferometric quantum key distribution. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) TPNC 2012. LNCS, vol. 7505, pp. 133–146. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33860-1_12

    Chapter  MATH  Google Scholar 

  12. Gottesman, D., Lo, H.K., Lütkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325–360 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003). https://doi.org/10.1103/PhysRevLett.91.057901

    Article  Google Scholar 

  14. Köpf, B., Basin, D.: An information-theoretic model for adaptive side-channel attacks. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, CCS 2007, pp. 286–296 (2007)

    Google Scholar 

  15. Kurtsiefer, C., et al.: A step towards global key distribution. Nature 419, 450 (2002). https://doi.org/10.1038/419450a

    Article  Google Scholar 

  16. Lo, H.K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photon. 8, 595–604 (2014). https://doi.org/10.1038/nphoton.2014.14910.1038/nphoton.2014.149

    Article  Google Scholar 

  17. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005). https://doi.org/10.1103/PhysRevLett.94.230504

    Article  Google Scholar 

  18. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4, 686–689 (2010). https://doi.org/10.1038/nphoton.2010.214

    Article  Google Scholar 

  19. Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74, 022313 (2006). https://doi.org/10.1103/PhysRevA.74.022313

    Article  Google Scholar 

  20. Makarov, V., Hjelme, D.R.: Faked states attack on quantum cryptosystems. J. Mod. Opt. 52, 691–705 (2005). https://doi.org/10.1080/09500340410001730986

    Article  Google Scholar 

  21. Pfaff, W., et al.: Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014). https://doi.org/10.1126/science.1253512

    Article  MathSciNet  MATH  Google Scholar 

  22. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  23. Scarani, V., Acín, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004). https://doi.org/10.1103/PhysRevLett.92.057901

    Article  Google Scholar 

  24. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009). https://doi.org/10.1103/RevModPhys.81.1301

    Article  Google Scholar 

  25. Scarani, V., Kurtsiefer, C.: The black paper of quantum cryptography: real implementation problems. Theor. Comput. Sci. 560, 27–32 (2014). https://doi.org/10.1016/j.tcs.2014.09.01510.1016/j.tcs.2014.09.015

    Article  MathSciNet  MATH  Google Scholar 

  26. Shamir, A.: Personal communication (around 1996–1999)

    Google Scholar 

  27. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)

    Google Scholar 

  28. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303–332 (1999). https://doi.org/10.1137/S0036144598347011

    Article  MathSciNet  MATH  Google Scholar 

  29. Vakhitov, A., Makarov, V., Hjelme, D.R.: Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography. J. Mod. Opt. 48, 2023–2038 (2001). https://doi.org/10.1080/09500340108240904

    Article  MATH  Google Scholar 

  30. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005). https://doi.org/10.1103/PhysRevLett.94.230503

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rotem Liss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liss, R., Mor, T. (2020). From Practice to Theory: The “Bright Illumination” Attack on Quantum Key Distribution Systems. In: Martín-Vide, C., Vega-Rodríguez, M.A., Yang, MS. (eds) Theory and Practice of Natural Computing. TPNC 2020. Lecture Notes in Computer Science(), vol 12494. Springer, Cham. https://doi.org/10.1007/978-3-030-63000-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63000-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62999-1

  • Online ISBN: 978-3-030-63000-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics