Skip to main content

Fundamentals of Generalized and Extended Graph-Based Structural Modeling

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2020)

Abstract

The subject of the paper is connected to defining data structures, which are or can be used in metamodeling and modeling disciplines. A new and general notion of Extended Graph Generalization has been introduced. This notion enables to represent arbitrarily complex such the structures. A way of introducing constraints, which allows to reduce this general form to any well known structure has been introduced as well. As the result of the extension and generalization mechanisms applied to the original graph definition any form of graph generalization exceeding well-known structures can be defined. Moreover, the way of associating any form of data to each such structure has been defined. Notions introduced in the paper are intended to be used while defining novel family of metamodels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bildhauer, D.: Associations as first-class elements. In: Proceedings of the 2011 Conference on Databases and Information Systems VI: Selected Papers from the Ninth International Baltic Conference, DB&IS 2010, pp. 108–121. IOS Press, NLD (2011)

    Google Scholar 

  2. Boyd, M., McBrien, P.: Comparing and transforming between data models via an intermediate hypergraph data model. In: Spaccapietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 69–109. Springer, Heidelberg (2005). https://doi.org/10.1007/11603412_3

    Chapter  MATH  Google Scholar 

  3. Bretto, A.: Hypergraph Theory: An Introduction. Mathematical Engineering. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-00080-0

    Book  MATH  Google Scholar 

  4. Ebert, J., Winter, A., Dahm, P., Franzke, A., Süttenbach, R.: Graph based modeling and implementation with EER/GRAL. In: Thalheim, B. (ed.) ER 1996. LNCS, vol. 1157, pp. 163–178. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0019922

    Chapter  Google Scholar 

  5. Jodłowiec, M.: Complex relationships modeling in association-oriented database metamodel. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B. (eds.) ACIIDS 2018. LNCS (LNAI), vol. 10752, pp. 46–56. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75420-8_5

    Chapter  Google Scholar 

  6. Joslyn, C., Nowak, K.: Ubergraphs: A definition of a recursive hypergraph structure. arXiv preprint arXiv:1704.05547 (2017)

  7. Krótkiewicz, M.: A novel inheritance mechanism for modeling knowledge representation systems. Comput. Sci. Inf. Syst. 15(1), 51–78 (2018)

    Article  Google Scholar 

  8. Krótkiewicz, M., Zabawa, P.: AODB and CDMM modeling – comparative case-study. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B. (eds.) ACIIDS 2018. LNCS (LNAI), vol. 10752, pp. 57–68. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75420-8_6

    Chapter  Google Scholar 

  9. Luoma, J., Kelly, S., Tolvanen, J.P.: Defining domain-specific modeling languages: collected experiences. In: 4th Workshop on Domain-Specific Modeling (2004)

    Google Scholar 

  10. McQuade, S.T., Merrill, N.J., Piccoli, B.: Metabolic graphs, life method and the modeling of drug action on mycobacterium tuberculosis. arXiv preprint arXiv:2003.12400 (2020)

  11. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principles of Model-Driven Architecture. Addison-Wesley Professional, Boston (2004)

    Google Scholar 

  12. Strachey, C.: Fundamental concepts in programming languages. Higher-Order Symb. Comput. 13(1–2), 11–49 (2000)

    Article  Google Scholar 

  13. Voloshin, V.I.: Introduction to Graph and Hypergraph Theory. Nova Science Publisher, New York (2009)

    MATH  Google Scholar 

  14. Zabawa, P.: Meta-modeling. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B. (eds.) ACIIDS 2018. LNCS (LNAI), vol. 10752, pp. 91–101. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75420-8_9

    Chapter  Google Scholar 

  15. Zabawa, P., Hnatkowska, B.: CDMM-F – domain languages framework. In: Świątek, J., Borzemski, L., Wilimowska, Z. (eds.) ISAT 2017. AISC, vol. 656, pp. 263–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67229-8_24

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Jodłowiec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jodłowiec, M., Krótkiewicz, M., Zabawa, P. (2020). Fundamentals of Generalized and Extended Graph-Based Structural Modeling. In: Nguyen, N.T., Hoang, B.H., Huynh, C.P., Hwang, D., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2020. Lecture Notes in Computer Science(), vol 12496. Springer, Cham. https://doi.org/10.1007/978-3-030-63007-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63007-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63006-5

  • Online ISBN: 978-3-030-63007-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics