Abstract
Neural network based models have achieved impressive results on the sentence classification task. However, most of previous work focuses on designing more sophisticated network or effective learning paradigms on monolingual data, which often suffers from insufficient discriminative knowledge for classification. In this paper, we investigate to improve sentence classification by multilingual data augmentation and consensus learning. Comparing to previous methods, our model can make use of multilingual data generated by machine translation and mine their language-share and language-specific knowledge for better representation and classification. We evaluate our model using English (i.e., source language) and Chinese (i.e., target language) data on several sentence classification tasks. Very positive classification performance can be achieved by our proposed model.
Y. Wang and Y. Chen—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Billal, B., Fonseca, A., Sadat, F., Lounis, H.: Semi-supervised learning and social media text analysis towards multi-labeling categorization. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 1907–1916. IEEE (2017)
Chen, Y., Zhu, X., Gong, S.: Person re-identification by deep learning multi-scale representations. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2590–2600 (2017)
Clavel, C., Callejas, Z.: Sentiment analysis: from opinion mining to human-agent interaction. IEEE Trans. Affect. Comput. 7(1), 74–93 (2015)
Dai, A.M., Le, Q.V.: Semi-supervised sequence learning. In: Advances in Neural Information Processing Systems, pp. 3079–3087 (2015)
Dong, R., O’Mahony, M.P., Schaal, M., McCarthy, K., Smyth, B.: Sentimental product recommendation. In: Proceedings of the 7th ACM Conference on Recommender Systems, pp. 411–414 (2013)
Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15(1), 3133–3181 (2014)
Graves, A., Mohamed, A.r., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645–6649. IEEE (2013)
Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177 (2004)
Irsoy, O., Cardie, C.: Deep recursive neural networks for compositionality in language. In: Advances in Neural Information Processing Systems, pp. 2096–2104 (2014)
Jiang, M., et al.: Text classification based on deep belief network and softmax regression. Neural Comput. Appl. 29(1), 61–70 (2016). https://doi.org/10.1007/s00521-016-2401-x
Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pp. 655–665 (2014)
Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 655–665 (2014)
Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751 (2014)
Kiros, R., et al.: Skip-thought vectors. In: Advances in Neural Information Processing Systems, pp. 3294–3302 (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)
Li, S., Zhao, Z., Liu, T., Hu, R., Du, X.: Initializing convolutional filters with semantic features for text classification. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 1884–1889 (2017)
Li, X., Roth, D.: Learning question classifiers. In: Proceedings of the 19th International Conference on Computational Linguistics, vol. 1, pp. 1–7. Association for Computational Linguistics (2002)
Liu, P., Qiu, X., Huang, X.J.: Adversarial multi-task learning for text classification. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1–10 (2017)
Liu, P., Qiu, X., Huang, X.: Recurrent Neural Network for Text Classification With Multi-task Learning, pp. 2873–2879 (2016)
Ma, M., Huang, L., Zhou, B., Xiang, B.: Dependency-based convolutional neural networks for sentence embedding. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pp. 174–179 (2015)
Pang, B., Lee, L.: A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, p. 271. Association for Computational Linguistics (2004)
Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 115–124. Association for Computational Linguistics (2005)
Pang, B., Lee, L., et al.: Opinion mining and sentiment analysis. Found. Trends® Inf. Retrieval 2(1–2), 1–135 (2008)
Sennrich, R., Haddow, B., Birch, A.: Improving neural machine translation models with monolingual data. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 86–96 (2016)
Socher, R., Huval, B., Manning, C.D., Ng, A.Y.: Semantic compositionality through recursive matrix-vector spaces. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 1201–1211. Association for Computational Linguistics (2012)
Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642 (2013)
Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1556–1566 (2015)
Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2(Nov), 45–66 (2001)
Wu, Y., et al.: Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)
Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1480–1489 (2016)
Yin, W., Schütze, H.: Multichannel variable-size convolution for sentence classification. In: Proceedings of the Nineteenth Conference on Computational Natural Language Learning, pp. 204–214 (2015)
Yogatama, D., Dyer, C., Ling, W., Blunsom, P.: Generative and discriminative text classification with recurrent neural networks. arXiv preprint arXiv:1703.01898 (2017)
Zhang, R., Lee, H., Radev, D.: Dependency sensitive convolutional neural networks for modeling sentences and documents. In: Proceedings of NAACL-HLT, pp. 1512–1521 (2016)
Zhang, T., Huang, M., Zhao, L.: Learning structured representation for text classification via reinforcement learning. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)
Zhang, X., LeCun, Y.: Text understanding from scratch. arXiv preprint arXiv:1502.01710 (2015)
Zhang, Y., Lease, M., Wallace, B.C.: Exploiting domain knowledge via grouped weight sharing with application to text categorization. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 155–160 (2017)
Zhang, Y., Roller, S., Wallace, B.C.: MGNC-CNN: a simple approach to exploiting multiple word embeddings for sentence classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1522–1527 (2016)
Zhang, Z., Liu, S., Li, M., Zhou, M., Chen, E.: Joint training for neural machine translation models with monolingual data. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)
Acknowledgements
This work was supported by National Natural Science Foundation of China (No. 61976057, No. 61572140), and Science and Technology Development Plan of Shanghai Science and Technology Commission (No. 20511101203, No. 20511102702, No. 20511101403, No. 18511105300). Yanfei Wang and Yangdong Chen contributed equally to this work, and were co-first authors. Yuejie Zhang was the corresponding author.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Y., Chen, Y., Zhang, Y. (2020). Improving Sentence Classification by Multilingual Data Augmentation and Consensus Learning. In: Sun, M., Li, S., Zhang, Y., Liu, Y., He, S., Rao, G. (eds) Chinese Computational Linguistics. CCL 2020. Lecture Notes in Computer Science(), vol 12522. Springer, Cham. https://doi.org/10.1007/978-3-030-63031-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-63031-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63030-0
Online ISBN: 978-3-030-63031-7
eBook Packages: Computer ScienceComputer Science (R0)