Abstract
Story generation is a challenging task of automatically creating natural languages to describe a sequence of events, which requires outputting text with not only a consistent topic but also novel wordings. Although many approaches have been proposed and obvious progress has been made on this task, there is still a large room for improvement, especially for improving thematic consistency and wording diversity. To mitigate the gap between generated stories and those written by human writers, in this paper, we propose a planning-based conditional variational autoencoder, namely Plan-CVAE, which first plans a keyword sequence and then generates a story based on the keyword sequence. In our method, the keywords planning strategy is used to improve thematic consistency while the CVAE module allows enhancing wording diversity. Experimental results on a benchmark dataset confirm that our proposed method can generate stories with both thematic consistency and wording novelty, and outperforms state-of-the-art methods on both automatic metrics and human evaluations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\(\rightarrow \) denotes forward and \(\leftarrow \) denotes backward.
- 2.
Results on four and five-grams have the same trends.
References
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. CoRR abs/1409.0473 (2015)
Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A., Jozefowicz, R., Bengio, S.: Generating sentences from a continuous space. In: Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning, pp. 10–21. Association for Computational Linguistics, Berlin, August 2016
Fan, A., Lewis, M., Dauphin, Y.: Hierarchical neural story generation. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 889–898. Association for Computational Linguistics, Melbourne, July 2018
Fan, A., Lewis, M., Dauphin, Y.: Strategies for structuring story generation. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2650–2660. Association for Computational Linguistics, Florence, Italy, July 2019
Jain, P., Agrawal, P., Mishra, A., Sukhwani, M., Laha, A., Sankaranarayanan, K.: Story generation from sequence of independent short descriptions (2017)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
Li, J., Galley, M., Brockett, C., Gao, J., Dolan, B.: A diversity-promoting objective function for neural conversation models. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 110–119. Association for Computational Linguistics, San Diego, June 2016
Li, J., Bing, L., Qiu, L., Chen, D., Zhao, D., Yan, R.: Learning to write creative stories with thematic consistency. In: AAAI 2019: Thirty-Third AAAI Conference on Artificial Intelligence (2019)
Li, J., et al.: Generating classical Chinese poems via conditional variational autoencoder and adversarial training. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 3890–3900. Association for Computational Linguistics, Brussels, October-November 2018
Liu, D., et al.: A character-centric neural model for automated story generation. In: AAAI, pp. 1725–1732 (2020)
Martin, L.J., Ammanabrolu, P., Hancock, W., Singh, S., Harrison, B., Riedl, M.O.: Event representations for automated story generation with deep neural nets. ArXiv abs/1706.01331 (2018)
Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neural network based language model. In: Eleventh Annual Conference of the International Speech Communication Association (2010)
Mostafazadeh, N., et al.: A corpus and cloze evaluation for deeper understanding of commonsense stories. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 839–849. Association for Computational Linguistics, San Diego, June 2016
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311–318. Association for Computational Linguistics, Philadelphia, Pennsylvania, July 2002
Roemmele, M., Kobayashi, S., Inoue, N., Gordon, A.: An RNN-based binary classifier for the story cloze test. In: Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics, pp. 74–80. Association for Computational Linguistics, Valencia, April 2017
Rose, S., Engel, D., Cramer, N., Cowley, W.: Automatic keyword extraction from individual documents, pp. 1–20 (2010)
Rush, A.M., Chopra, S., Weston, J.: A neural attention model for abstractive sentence summarization. arXiv preprint arXiv:1509.00685 (2015)
Serban, I.V., et al.: A hierarchical latent variable encoder-decoder model for generating dialogues. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI 2017, pp. 3295–3301. AAAI Press (2017)
Shen, X., et al.: A conditional variational framework for dialog generation. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 504–509. Association for Computational Linguistics, Vancouver, July 2017
Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)
Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 5998–6008. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
Wang, T., Wan, X.: T-CVAE: transformer-based conditioned variational autoencoder for story completion. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp. 5233–5239. International Joint Conferences on Artificial Intelligence Organization (2019)
Xu, J., Ren, X., Zhang, Y., Zeng, Q., Cai, X., Sun, X.: A skeleton-based model for promoting coherence among sentences in narrative story generation. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4306–4315. Association for Computational Linguistics, Brussels, October-November 2018
Yang, X., Lin, X., Suo, S., Li, M.: Generating thematic Chinese poetry using conditional variational autoencoders with hybrid decoders. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018, pp. 4539-4545. AAAI Press (2018)
Yao, L., Peng, N., Weischedel, R., Knight, K., Zhao, D., Yan, R.: Plan-and-write: towards better automatic storytelling. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 7378–7385 (2019)
Yu, M.H., et al.: Draft and edit: automatic storytelling through multi-pass hierarchical conditional variational autoencoder. In: AAAI, pp. 1741–1748 (2020)
Zhang, B., Xiong, D., Su, J., Duan, H., Zhang, M.: Variational neural machine translation. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 521–530. Association for Computational Linguistics, Austin, November 2016
Zhao, T., Zhao, R., Eskenazi, M.: Learning discourse-level diversity for neural dialog models using conditional variational autoencoders. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 654–664. Association for Computational Linguistics, Vancouver, July 2017
Acknowledgements
We would like to thank the reviewers for their constructive comments. This work was supported by the National Key Research and Development Program of China (No. 2017YFC0804001), the National Science Foundation of China (NSFC No. 61876196 and NSFC No. 61672058) and the foundation of Key Laboratory of Artificial Intelligence, Ministry of Education, P.R. China. Rui Yan was sponsored by Beijing Academy of Artificial Intelligence (BAAI).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, L., Li, J., Zhao, D., Yan, R. (2020). Plan-CVAE: A Planning-Based Conditional Variational Autoencoder for Story Generation. In: Sun, M., Li, S., Zhang, Y., Liu, Y., He, S., Rao, G. (eds) Chinese Computational Linguistics. CCL 2020. Lecture Notes in Computer Science(), vol 12522. Springer, Cham. https://doi.org/10.1007/978-3-030-63031-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-63031-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63030-0
Online ISBN: 978-3-030-63031-7
eBook Packages: Computer ScienceComputer Science (R0)