Skip to main content

On Secondary Structure Analysis by Using Formal Grammars and Artificial Neural Networks

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2019)

Abstract

A way to combine formal grammars and artificial neural networks for biological sequences processing was recently proposed. In this approach, an ordinary grammar encodes primitive features of the RNA secondary structure, parsing is utilized for features extraction and artificial neural network—for processing of the extracted features. Parsing is a bottleneck of the solution: input sequences should first be parsed before processing with a trained model which is a time-consuming operation when working with huge biological databases. In this work, we solve this problem by employing staged learning and limiting parsing to be used only during network training. We also compare networks which represent the parsing result in two different ways: by a vector and a bitmap image. Finally, we evaluate our solution on tRNA classification tasks.

Supported by the Russian Science Foundation grant 18-11-00100.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    GtRNAdb tRNA database Web page: http://gtrnadb.ucsc.edu/. Access date: 05.06.2019.

  2. 2.

    The tRNADB-CE tRNA database Web page: http://trna.ie.niigata-u.ac.jp/cgi-bin/trnadb/index.cgi. Access date: 05.06.2019.

  3. 3.

    YaccConstructor is an SDK for syntax analysis tools development. Project repository on GitHub: https://github.com/YaccConstructor/YaccConstructor. Access date: 07.03.2020.

  4. 4.

    Project description is available at the project page: https://research.jetbrains.org/groups/plt_lab/projects?project_id=43. Source code and documentation are published at GitHub: https://github.com/LuninaPolina/SecondaryStructureAnalyzer. Access date: 07.03.2020.

References

  1. Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). http://tensorflow.org/. Software available from tensorflow.org

  2. Abe, T., Inokuchi, H., Yamada, Y., Muto, A., Iwasaki, Y., Ikemura, T.: TRNADB-CE: TRNA gene database well-timed in the era of big sequence data. Front. Genet. 5, 114 (2014)

    Article  Google Scholar 

  3. Azimov, R., Grigorev, S.: Context-free path querying by matrix multiplication. In: Proceedings of the 1st ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA). GRADES-NDA 2018, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3210259.3210264

  4. Chan, P.P., Lowe, T.M.: GTRNADB 2.0 an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 44(D1), D184–D189 (2016)

    Article  Google Scholar 

  5. Chollet, F., et al.: Keras (2015). https://keras.io

  6. Dowell, R.D., Eddy, S.R.: Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction. BMC Bioinform. 5, 71 (2004). https://doi.org/10.1186/1471-2105-5-71. https://pubmed.ncbi.nlm.nih.gov/15180907

  7. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998). https://doi.org/10.1017/CBO9780511790492

    Book  MATH  Google Scholar 

  8. Eddy, S.R., Durbin, R.: RNA sequence analysis using covariance models. Nucleic Acids Res. 22(11), 2079–2088 (1994). https://doi.org/10.1093/nar/22.11.2079

    Article  Google Scholar 

  9. Grigorev, S., Lunina, P.: The composition of dense neural networks and formal grammars for secondary structure analysis. In: Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3 BIOINFORMATICS: BIOINFORMATICS, pp. 234–241. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007472302340241

  10. Higashi, S., Hungria, M., De O. C. Brunetto, M.A.: Bacteria classification based on 16s ribosomal gene using artificial neural networks. In: Proceedings of the 8th WSEAS International Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, pp. 86–91. CIMMACS 2009, World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA (2009)

    Google Scholar 

  11. Jabbari, H., Condon, A.: A fast and robust iterative algorithm for prediction of RNA pseudoknotted secondary structures. BMC Bioinform. 15(1), 147 (2014)

    Article  Google Scholar 

  12. Jabbari, H., Condon, A., Pop, A., Pop, C., Zhao, Y.: HFold: RNA Pseudoknotted Secondary Structure Prediction Using Hierarchical Folding. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS, vol. 4645, pp. 323–334. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74126-8_30

    Chapter  Google Scholar 

  13. Knudsen, B., Hein, J.: RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinform. 15(6), 446–454 (1999). https://doi.org/10.1093/bioinformatics/15.6.446

    Article  Google Scholar 

  14. Lu, W., et al.: Predicting RNA secondary structure via adaptive deep recurrent neural networks with energy-based filter. BMC Bioinform. 20(25), (2019). https://doi.org/10.1186/s12859-019-3258-7

  15. Nawrocki, E.P., Eddy, S.R.: Infernal: 1.1 100-fold faster RNA homology searches. Bioinform. 29(22), 2933–2935 (2013)

    Article  Google Scholar 

  16. Quadrini, M., Merelli, E., Piergallini, R.: Loop grammars to identify RNA structural patterns. In: Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies, vol. 3, pp. 302–309. BIOINFORMATICS INSTICC, SciTePress (2019). https://doi.org/10.5220/0007576603020309

  17. Sato, K., Hamada, M., Asai, K., Mituyama, T.: CentroidFold: a web server for RNA secondary structure prediction. Nucleic Acids Res. 37(suppl.2), W277–W280 (2009)

    Article  Google Scholar 

  18. Sato, K., Kato, Y., Hamada, M., Akutsu, T., Asai, K.: IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformat. 27(13), 85–93 (2011). https://doi.org/10.1093/bioinformatics/btr215

    Article  Google Scholar 

  19. Sherman, D.J.: Humidor: microbial community classification of the 16s gene by training cigar strings with convolutional neural networks (2017)

    Google Scholar 

  20. Singh, J., Hanson, J., Paliwal, K., Zhou, Y.: RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat. Commun. 10(1) (2019). https://doi.org/10.1038/s41467-019-13395-9

  21. Steeg, E.W.: Neural Networks, Adaptive Optimization, and RNA Secondary Structure Prediction, pp. 12–160. American Association for Artificial Intelligence, USA (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polina Lunina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lunina, P., Grigorev, S. (2020). On Secondary Structure Analysis by Using Formal Grammars and Artificial Neural Networks. In: Cazzaniga, P., Besozzi, D., Merelli, I., Manzoni, L. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2019. Lecture Notes in Computer Science(), vol 12313. Springer, Cham. https://doi.org/10.1007/978-3-030-63061-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63061-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63060-7

  • Online ISBN: 978-3-030-63061-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics