Skip to main content

Large-Scale Kernel Method for Vertical Federated Learning

  • Chapter
  • First Online:
Federated Learning

Abstract

For nowadays real-world data mining task, multiple data holders usually maintain the different feature part of the common data which is called as vertically partitioned data. Accompanying by the emerging demand of privacy persevering, it is hard to do data mining over this kind of vertically partitioned data by legacy machine learning methods. In consideration of less literature for non-linear learning over kernels, in this chapter, we propose a vertical federated kernel learning (VFKL) method to train over the vertically partitioned data. Specifically, we first approximate the kernel function by the random feature technique, and then federatedly update the predict function by the special designed doubly stochastic gradient without leaking privacy in both data and model. Theoretically, our VFKL could provide a sublinear convergence rate, and guarantee the security of data under the common semi-honest assumption. We conduct numerous experiments on various datasets to demonstrate the effectiveness and superiority of the proposed VFKL method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://drive.google.com/open?id=1ORqXDM1s1eiA-XApy4oCpGhAnhFbrqKn.

  2. 2.

    The framework code is available at https://github.com/FederatedAI/FATE.

  3. 3.

    DSG code: https://github.com/zixu1986/Doubly_Stochastic_Gradients.

  4. 4.

    Datasets can be found at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

  5. 5.

    https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients.

  6. 6.

    https://www.kaggle.com/c/GiveMeSomeCredit/data.

References

  1. Badshah, N.: Facebook to contact 87 million users affected by data breach. The Guardian) (2018). https://www.theguardian.com/technology/2018/apr/08/facebook-to-contact-the-87-million-users-affected-by-data-breach

  2. Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Springer, New York (2011)

    Google Scholar 

  3. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011). Software. http://www.csie.ntu.edu.tw/~cjlin/libsvm

  4. Cheng, K., Fan, T., Jin, Y., Liu, Y., Chen, T., Yang, Q.: SecureBoost: a lossless federated learning framework. arXiv preprint arXiv:1901.08755 (2019)

  5. Dai, B., Xie, B., He, N., Liang, Y., Raj, A., Balcan, M.F.F., Song, L.: Scalable kernel methods via doubly stochastic gradients. In: Advances in Neural Information Processing Systems, pp. 3041–3049 (2014)

    Google Scholar 

  6. Dalcin, L.D., Paz, R.R., Kler, P.A., Cosimo, A.: Parallel distributed computing using Python. Adv. Water Resour. 34(9), 1124–1139 (2011)

    Article  Google Scholar 

  7. Du, W., Atallah, M.J.: Privacy-preserving cooperative statistical analysis. In: Seventeenth Annual Computer Security Applications Conference, pp. 102–110. IEEE (2001)

    Google Scholar 

  8. EU: Regulation (EU) 2016/679 of the European parliament and of the council on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46/EC (general data protection regulation) (2016). https://eur-lex.europa.eu/legal-content/EN/TXT

  9. Gascón, A., et al.: Secure linear regression on vertically partitioned datasets. IACR Cryptology ePrint Archive 2016, 892 (2016)

    Google Scholar 

  10. Gascón, A., et al.: Privacy-preserving distributed linear regression on high-dimensional data. Proc. Priv. Enhancing Technol. 2017(4), 345–364 (2017)

    Article  Google Scholar 

  11. Gu, B., Dang, Z., Li, X., Huang, H.: Federated doubly stochastic kernel learning for vertically partitioned data. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining on Applied Data Science Track. ACM (2020)

    Google Scholar 

  12. Gu, B., Huo, Z., Huang, H.: Asynchronous doubly stochastic group regularized learning. In: International Conference on Artificial Intelligence and Statistics, pp. 1791–1800 (2018)

    Google Scholar 

  13. Hardy, S., et al.: Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption. arXiv preprint arXiv:1711.10677 (2017)

  14. Karr, A.F., Lin, X., Sanil, A.P., Reiter, J.P.: Privacy-preserving analysis of vertically partitioned data using secure matrix products. J. Off. Stat. 25(1), 125 (2009)

    Google Scholar 

  15. Liu, Y., Liu, Y., Liu, Z., Zhang, J., Meng, C., Zheng, Y.: Federated forest. arXiv preprint arXiv:1905.10053 (2019)

  16. Nock, R., et al.: Entity resolution and federated learning get a federated resolution. arXiv preprint arXiv:1803.04035 (2018)

  17. Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: Advances in Neural Information Processing Systems, pp. 1177–1184 (2008)

    Google Scholar 

  18. Rahimi, A., Recht, B.: Weighted sums of random kitchen sinks: replacing minimization with randomization in learning. In: Advances in Neural Information Processing Systems, pp. 1313–1320 (2009)

    Google Scholar 

  19. Rudin, W.: Fourier Analysis on Groups, vol. 121967. Wiley, Hoboken (1962)

    MATH  Google Scholar 

  20. Sanil, A.P., Karr, A.F., Lin, X., Reiter, J.P.: Privacy preserving regression modelling via distributed computation. In: Proceedings of the tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 677–682. ACM (2004)

    Google Scholar 

  21. Skillicorn, D.B., Mcconnell, S.M.: Distributed prediction from vertically partitioned data. J. Parallel Distrib. Comput. 68(1), 16–36 (2008)

    Article  Google Scholar 

  22. Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically partitioned data. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery And Data Mining, pp. 639–644. ACM (2002)

    Google Scholar 

  23. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically partitioned data. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 206–215 (2003)

    Google Scholar 

  24. Wan, L., Ng, W.K., Han, S., Lee, V.: Privacy-preservation for gradient descent methods. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 775–783. ACM (2007)

    Google Scholar 

  25. Xie, B., Liang, Y., Song, L.: Scale up nonlinear component analysis with doubly stochastic gradients. In: Advances in Neural Information Processing Systems, pp. 2341–2349 (2015)

    Google Scholar 

  26. Yang, J., Sindhwani, V., Fan, Q., Avron, H., Mahoney, M.W.: Random laplace feature maps for semigroup kernels on histograms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 971–978 (2014)

    Google Scholar 

  27. Yu, H., Vaidya, J., Jiang, X.: Privacy-preserving SVM classification on vertically partitioned data. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 647–656. Springer, Heidelberg (2006). https://doi.org/10.1007/11731139_74

    Chapter  Google Scholar 

  28. Zhang, G.D., Zhao, S.Y., Gao, H., Li, W.J.: Feature-distributed SVRG for high-dimensional linear classification. arXiv preprint arXiv:1802.03604 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dang, Z., Gu, B., Huang, H. (2020). Large-Scale Kernel Method for Vertical Federated Learning. In: Yang, Q., Fan, L., Yu, H. (eds) Federated Learning. Lecture Notes in Computer Science(), vol 12500. Springer, Cham. https://doi.org/10.1007/978-3-030-63076-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63076-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63075-1

  • Online ISBN: 978-3-030-63076-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics