Skip to main content

Federated Soft Gradient Boosting Machine for Streaming Data

  • Chapter
  • First Online:
Federated Learning

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12500))

Abstract

Federated learning has received wide attention in both academic and industrial communities recently. Designing federated learning models applicable on the streaming data has received growing interests since the data stored within each participant may often vary from time to time. Based on recent advancements on soft gradient boosting machine, in this work, we propose the federated soft gradient boosting machine framework applicable on the streaming data. Compared with traditional gradient boosting methods, where base learners are trained sequentially, each base learner in the proposed framework can be efficiently trained in a parallel and distributed fashion. Experiments validated the effectiveness of the proposed method in terms of accuracy and efficiency, compared with other federated ensemble methods as well as its corresponding centralized versions when facing the streaming data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baldi, P., Sadowski, P., Whiteson, D.: Searching for exotic particles in high-energy physics with deep learning. Nat. Commun. 5(1), 1–9 (2014)

    Article  Google Scholar 

  2. Bennett, J., Lanning, S., et al.: The Netflix prize. In: KDD Cup 2007, vol. 35 (2007)

    Google Scholar 

  3. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press, Boca Raton (1984)

    MATH  Google Scholar 

  4. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: SIGKDD, pp. 785–794 (2016)

    Google Scholar 

  5. Cheng, K., Fan, T., Jin, Y., Liu, Y., Chen, T., Yang, Q.: Secureboost: a lossless federated learning framework. arXiv preprint arXiv:1901.08755 (2019)

  6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  8. Feng, J., Xu, Y.X., Jiang, Y., Zhou, Z.H.: Soft gradient boosting machine. arXiv preprint arXiv:2006.04059 (2020)

  9. Feng, J., Yu, Y., Zhou, Z.H.: Multi-layered gradient boosting decision trees. In: NIPS, pp. 3551–3561 (2018)

    Google Scholar 

  10. Feng, Z., et al.: SecureGBM: secure multi-party gradient boosting. In: IEEE International Conference on Big Data, pp. 1312–1321. IEEE (2019)

    Google Scholar 

  11. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001)

    Article  MathSciNet  Google Scholar 

  12. Frosst, N., Hinton, G.: Distilling a neural network into a soft decision tree. arXiv preprint arXiv:1711.09784 (2017)

  13. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 1–37 (2014)

    Article  Google Scholar 

  14. Hard, A., et al.: Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604 (2018)

  15. He, X., et al.: Practical lessons from predicting clicks on ads at Facebook. In: International Workshop on Data Mining for Online Advertising, pp. 1–9 (2014)

    Google Scholar 

  16. Kairouz, P., et al.: Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977 (2019)

  17. Ke, G., et al.: LightGbm: a highly efficient gradient boosting decision tree. In: NIPS, pp. 3146–3154 (2017)

    Google Scholar 

  18. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  19. Li, Q., Wen, Z., He, B.: Practical federated gradient boosting decision trees. In: AAAI, pp. 4642–4649 (2020)

    Google Scholar 

  20. Lin, T.-Y.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  21. Liu, Y., Chen, T., Yang, Q.: Secure federated transfer learning. arXiv preprint arXiv:1812.03337 (2018)

  22. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282 (2017)

    Google Scholar 

  23. Natekin, A., Knoll, A.: Gradient boosting machines, a tutorial. Front. Neurorobotics 7, 21 (2013)

    Article  Google Scholar 

  24. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NIPS, pp. 8026–8037 (2019)

    Google Scholar 

  25. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: Catboost: unbiased boosting with categorical features. In: NIPS, pp. 6638–6648 (2018)

    Google Scholar 

  26. Shalev-Shwartz, S.: Online learning and online convex optimization. Foundations Trends Mach. Learn. 4(2), 107–194 (2011)

    Article  Google Scholar 

  27. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. 10(2), 1–19 (2019)

    Article  Google Scholar 

  29. Zhao, P., Cai, L.-W., Zhou, Z.-H.: Handling concept drift via model reuse. Mach. Learn. 109(3), 533–568 (2019). https://doi.org/10.1007/s10994-019-05835-w

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. CRC Press, Boca Raton (2012)

    Book  Google Scholar 

  31. Zhou, Z.H., Feng, J.: Deep forest. In: IJCAI, pp. 3553–3559 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji Feng or Yi-Xuan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, J., Xu, YX., Wang, YG., Jiang, Y. (2020). Federated Soft Gradient Boosting Machine for Streaming Data. In: Yang, Q., Fan, L., Yu, H. (eds) Federated Learning. Lecture Notes in Computer Science(), vol 12500. Springer, Cham. https://doi.org/10.1007/978-3-030-63076-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63076-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63075-1

  • Online ISBN: 978-3-030-63076-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics