Skip to main content

Deep Learning Based Hyperspectral Images Analysis for Shrimp Contaminated Detection

  • Conference paper
  • First Online:
Industrial Networks and Intelligent Systems (INISCOM 2020)

Abstract

In this paper, a deep learning based hyperspectral image analysis for detecting contaminated shrimp is proposed. The ability of distinguishing shrimps into two classes: clean and contaminated shrimps is visualized by t-distributed Stochastic Neighbor Embedding (t-SNE) using spectral feature data. Using only some small data set of hyperspectral images of shrimps, a simple processing technique is applied to generate enough data for training a deep neural network (DNN) with high reliability. Our results attain the accuracy of 98% and F1-score over 94%. This works confirms that with only few data samples, Hyperspectral Imaging processing technique together with DNN can be used to classify abnormality in agricultural productions like shrimp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.shrimpalliance.com/fda-refuses-antibiotic-contaminated-shrimp-from-china-and-vietnam-in-july/.

References

  1. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  2. Schelkanova, I., Pandya, A., Muhaseen, A., Saiko, G., Douplik, A.: 13 - early optical diagnosis of pressure ulcers. In: Igor, M. (ed.) Biophotonics for Medical Applications, pp. 347–375. Woodhead Publishing (2015)

    Google Scholar 

  3. Vasefi, F., MacKinnon, N., Farkas, D.L.: Chapter 16 - hyperspectral and multispectral imaging in dermatology. In: Hamblin, M.R., Avci, P., Gupta, G.K. (eds.) Imaging in Dermatology, pp. 187–201. Academic Press, Boston (2016)

    Chapter  Google Scholar 

  4. Yu, X., Tang, L., Wu, X., Lu, H.: Nondestructive freshness discriminating of shrimp using visible/near-infrared hyperspectral imaging technique and deep learning algorithm. J. Food Anal. Methods 11, 768–780 (2018)

    Article  Google Scholar 

  5. Al-Sarayreh, M., Reis, M., Yan, W., Klette, R.: Detection of red-meat adulteration by deep spectral-spatial features in hyperspectral images. J. Imaging 4, 63 (2018)

    Article  Google Scholar 

  6. Li, X., Li, R., Wang, M., Liu, Y., Zhang, B., Zhou, J.C.: Hyperspectral imaging and their applications in the nondestructive quality assessment of fruits and vegetables (2017). https://doi.org/10.5772/intechopen.72250

  7. Specim: Specim FX10 - user guide 1.0. Specim imaging Oy Ltd

    Google Scholar 

  8. Li, Y., Zhang, H., Xue, X., Jiang, Y., Shen, Q.: Deep learning for remote sensing image classification: a survey. In: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, p. e1264 (May 2018). https://doi.org/10.1002/widm.1264

  9. Wang, W., et al.: Medical image classification using deep learning. In: Chen, Y.-W., Jain, L.C. (eds.) Deep Learning in Healthcare. ISRL, vol. 171, pp. 33–51. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32606-7_3

    Chapter  Google Scholar 

  10. Lu, Y.: Food image recognition by using convolutional neural networks (CNNs) (December 2016)

    Google Scholar 

  11. Thanasarn, N., Chaiprapat, S., Waiyakan, K., Thongkaew, K.: Automated discrimination of deveined shrimps based on grayscale image parameters. J. Food Process Eng. 42, e13041 (2019). https://doi.org/10.1111/jfpe.13041

    Article  Google Scholar 

  12. Sural, S., Qian, G., Pramanik, S.: Segmentation and histogram generation using the HSV color space for image retrieval. In: Proceedings of International Conference on Image Processing, vol. 2, pp. II-589 (February 2002). https://doi.org/10.1109/ICIP.2002.1040019

  13. Russell, B., Torralba, A., Murphy, K., Freeman, W.: LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77, 157–173 (2008). https://doi.org/10.1007/s11263-007-0090-8

    Article  Google Scholar 

  14. Hahnloser, R., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., Seung, H.S.: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 405(6789), 947–951 (2000)

    Article  Google Scholar 

  15. Han, J., Moraga, C.: The influence of the sigmoid function parameters on the speed of backpropagation learning. In: Mira, J., Sandoval, F. (eds.) IWANN 1995. LNCS, vol. 930, pp. 195–201. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59497-3_175

    Chapter  Google Scholar 

  16. Kingma, P., Lei Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980v9 (2014)

  17. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

Download references

Acknowledgement

We thank Minh Phu seafood corporation for providing hyperspectral imaging data and inspiring us to realize this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huy-Dung Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, MH., Nguyen-Thi, XH., Pham, CN., LĂȘ, N.C., Han, HD. (2020). Deep Learning Based Hyperspectral Images Analysis for Shrimp Contaminated Detection. In: Vo, NS., Hoang, VP. (eds) Industrial Networks and Intelligent Systems. INISCOM 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 334. Springer, Cham. https://doi.org/10.1007/978-3-030-63083-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63083-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63082-9

  • Online ISBN: 978-3-030-63083-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics