Abstract
IoTs are rapidly growing with the addition of new sensors and devices to existing IoTs. The demand of IoT nodes keeps increasing to adapt to changing environment conditions and application requirements, the need for reconfiguring these already existing IoTs is rapidly increasing. It is also important to manage the intelligent context to execute when it will trigger the appropriate behavior. Yet, many algorithms based on different models for time-series sensor data prediction can be used for this purpose. However, each algorithm has its own advantages and disadvantages, resulting in different reconfiguration behavior predictions for each specific IoTs application. Developing an IoTs reconfiguration application has difficulty implementing many different data prediction algorithms for different sensor measurements to find the most suitable algorithm. In this paper, we propose IoTs Reconfiguration Prediction System (IRPS), a tool that helps IoT developers to choose the most suitable time-series sensor data prediction algorithms for trigger IoTs reconfiguration actions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Nguyen-Anh, T., Le-Trung, Q.: RFL-IoT: an IoT reconfiguration framework applied fuzzy logic for context management. In: IEEE International Conference on Research, Innovation and Vision for the Future (RIVF). IEEE (2019)
Sharma, K., Nandal, R.: A literature study on machine learning fusion with IOT. In: 2019 3rd International Conference on Trends in Electronics and Informatics (2019)
Nikolov, N.: Research firmware update over the air from the cloud. In: International Scientific Conference Electronics (ET2018). IEEE, Bulgaria (2018)
Tang, J., Sun, D., Liu, S., Gaudiot, J.-L.: Enabling deep learning on IoT devices. Computer 50, 92–96 (2017)
Anh, T.N., Le Trung, Q., Hai, B.T., Van, D.H: R-IoT: a framework for IoTs reconfiguration in cloud. In: The 6th Conference on Information Technology and Its (CITA) (2017)
Nguyen-Anh, T., Le-Trung, Q.: An IoT reconfiguration framework applied ontology-based modeling and bayesian-based reasoning for context management. In: 2019 6th NAFOSTED Conference on Information and Computer Science (NICS), IEEE NICS 2019 (2019)
Nguyen-Anh, T., Le-Trung, Q.: An IoTs reconfiguration framework with intelligent context management. In: IEEE Seventh International Conference on Communications and Electronics (ICCE). IEEE (2018)
Mohammadi, M., Al-Fuqaha, A., Sorour, S., Guizani, M.: Deep learning for IoT big data and streaming analytics: a survey. IEEE Commun. Surv. Tutor. 20, 2923–2960 (2018)
Perera, C., Zaslavsky, A., Christen, P.: Context aware computing for the Internet of Things: a survey. IEEE Commun. Surv. Tutor. 16, 414–454 (2013)
Craig, G., Adnan, Al., Quan, B.: OTAP arbitration effects in randomly deployed WSN’s. In: International Telecommunication Networks and Applications. IEEE, Australia (2015)
Sivaharan, T., Blair, G., Coulson, G.: GREEN: a configurable and re-configurable publish-subscribe middleware for pervasive computing. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 732–749. Springer, Heidelberg (2005). https://doi.org/10.1007/11575771_46
Ruckebusch, P., Van Damme, J., De Poorter, E., Moerman, I.: Dynamic reconfiguration of network protocols for constrained Internet-of-Things devices. In: Mandler, B., et al. (eds.) IoT360 2015. LNICST, vol. 170, pp. 269–281. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47075-7_31
Aberer, K., Hauswirth, M., Salehi, A.: A middleware for fast and flexible sensor network deployment. In: Proceedings of 32nd International Conference on Very Large DataBase. ACM (2006)
Gámez, N., Fuentes, L.: FamiWare: a family of event-based middleware for ambient intelligence. Pers. Ubiquit. Comput. 15(4), 329–339 (2011)
Henry, J., Marti, H.: Quick and efficient link quality estimation in wireless sensors networks. In: Wireless On-Demand Network Systems and Services. IEEE, France (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Nguyen-Anh, T., Le-Trung, Q. (2020). A Predictive System for IoTs Reconfiguration Based on TensorFlow Framework. In: Vo, NS., Hoang, VP. (eds) Industrial Networks and Intelligent Systems. INISCOM 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 334. Springer, Cham. https://doi.org/10.1007/978-3-030-63083-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-63083-6_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63082-9
Online ISBN: 978-3-030-63083-6
eBook Packages: Computer ScienceComputer Science (R0)