Skip to main content

Methods for Calculating a Mathematical Model for Determining the Electromagnetic Field in Conducting Ferromagnetic Layer

  • Conference paper
  • First Online:
Advances in Intelligent Systems and Computing V (CSIT 2020)

Abstract

The values of magnetic and electric field voltages during induction heating of an electrically conductive ferromagnetic layer in a stationary time periodic electromagnetic field are investigated. The problem is solved using a method of small parameter and embedded methods of the Runge-Kutta type with a two-sided estimate of the local error. The proposed formulas, using only three calls to the right side of the differential equation, make it possible to obtain at each nodal point not only second and third order accuracy methods and two-sided first and second order accuracy formulas, but also the estimation of the principal terms of the local error of the two-sided approximations. Numerical calculations have shown a significant effect on the distribution of the amplitudes of the harmonics of the field strength of the nonlinear relationship between induction and magnetic field strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lavrenyuk, S.P., Pukach, P.Y.: Mixed problem for a nonlinear hyperbolic equation in a domain unbounded with respect to space variables. Ukrainian Math. J. 59(11), 708–718 (2007)

    Google Scholar 

  2. Pukach, P.Y.: Qualitative methods for the investigation of a mathematical model of nonlinear vibrations of a conveyer belt. J. Math. Sci. 198(1), 31–38 (2014)

    Google Scholar 

  3. Pukach, P.Y., Kuzio, I.V.: Nonlinear transverse vibrations of semiinfinite cable with consideration paid to resistance. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 3, 82–86 (2013)

    Google Scholar 

  4. Pukach, P.Y.: On the unboundedness of a solution of the mixed problem for a nonlinear evolution equation at a finite time. Nonlinear Oscillations 14(3), 369–378 (2012)

    Google Scholar 

  5. Pukach, P.Y., Kuzio, I.V.: Resonance phenomena in quasi-zero stiffness vibration isolation systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 3, 62–67 (2015)

    Google Scholar 

  6. Pukach, P.Y., Kuzio, I.V., Nytrebych, Z.M., Ilkiv, V.S.: Analytical methods for determining the effect of the dynamic process on the nonlinear flexural vibrations and the strength of compressed shaft. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 5, 69–76 (2017)

    Google Scholar 

  7. Pukach, P.Y., Kuzio, I.V., Nytrebych, Z.M., Ilkiv, V.S.: Asymptotic method for investigating resonant regimes of nonlinear bending vibrations of elastic shaft. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 1, 68–73 (2018)

    Google Scholar 

  8. Pukach, P.Y., Shakhovska, K.: The mathematical method development of decisions supporting concerning products placement based on analysis of market basket content. In: Proceedings of 14th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM-2017), pp. 347–350 (2017)

    Google Scholar 

  9. Kolesnikov, P.M.: Introduction to Nonlinear Electrodynamics. Nauka i tekhnologii, Minsk (1971). (in Russian)

    Google Scholar 

  10. Druzhinin, V.V., Veksler, A.Z., Kurennykh, L.K.: Guide to the Magnetic and Electrical Properties of Hot Rolled Electrical Steel. Publishing House of Standards, Moscow (1971). (in Russian)

    Google Scholar 

  11. Diveyev, B., Butyter, I., Pelekh, Y.: Dynamic properties of symmetric and asymmetric beams made of functionally graded materials in bending. Mech. Compos. Mater. 54(1), 111–118 (2018)

    Google Scholar 

  12. Havrysh, V., Pelekh, Y., Kolyasa, L., Ovchar, I., Ivasyk, H., Bilas, O.: Examining the temperature fields in flat piecewise-uniform structures. Eastern-European J. Enterp. Technol. 2(5–86), 23–32 (2017)

    Google Scholar 

  13. Kostenko, I., Pelekh, Y., Nykolyshyn, T., Karkuliovskyy, V.: Modelling and method of investigation of the limiting equilibrium of an anisotropic cylindrical shell with crack. In: Proceedings of 13th International Conference Perspective Technologies and Methods in MEMS Design (MEMSTECH-2017), pp. 146–150 (2017)

    Google Scholar 

  14. Prokopovych, Y., Pelekh, Y., Kostenko, I., Zashkilnyak, I.: Mathematical model and boundary equilibrium of the cylindrical shell with elastic filling depended by the internal crack. In: Proceedings of 13th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH-2018), pp. 136–140 (2018)

    Google Scholar 

  15. Fehberg, E.: Low-order classical Runge-Kutte formulas with step size control and their application to same heat transfer problems. Computing 6, 61–71 (1970)

    Article  Google Scholar 

  16. Bogacki, P., Shampine, L.F.: A 3(2) pair of Runge-Kutta formulas. Appl. Math. Lett. 2(4), 321–325 (1989)

    Article  MathSciNet  Google Scholar 

  17. Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)

    Article  MathSciNet  Google Scholar 

  18. Prince, P.J., Dormand, J.R.: High order embedded Runge-Kutta formulae. J. Comput. Appl. Math. 7(1), 67–75 (1981)

    Article  MathSciNet  Google Scholar 

  19. Chaplygin, S.A.: A New Method for the Approximate Integration of Differential Equations. Gostekhizdat, Moscow (1950). (in Russian)

    Google Scholar 

  20. Kurpel, N.S., Shuvar, B.A.: Bilateral Operator Inequalities and Their Application. Naukova Dumka, Kiev (1980). (in Russian)

    MATH  Google Scholar 

  21. Shuvar, B.A., Kopach, M.I., Mentynskyy, S.M., Obshta, A.F.: Bilateral Approximate Methods. Information Technology Center of the Carpathian National University named after V. Stefanik, Ivano-Frankivsk (2007). (in Ukraine)

    Google Scholar 

  22. Obshta, A.F., Shuvar, B.A.: Bilateral Integral and Differential Inequalities. Kamenyar, Lviv (2011). (in Ukraine)

    MATH  Google Scholar 

  23. Sidorov, M.V.: Method of two-sided approximations of the solution of the first boundary value problem for nonlinear ordinary differential equations based on the Green’s function use. Radio Electron. Comput. Sci. Control 1, 57–65 (2019). (in Ukraine)

    Google Scholar 

  24. Gorbunov, A.D., Shakhov, Y.A.: On the approximate solutions of the Cauchy problem for ordinary differential equations with preassigned number of valid signs. I. Zh. Vychisl. Mat. Fiz. 3(2), 239–253 (1963) (in Russian)

    Google Scholar 

  25. Shakhov, Y.A.: Solution of the Cauchy problem with a preassigned number of correct signs for an ordinary differential equation, questions in computational mathematics. Proc. Comput. Cent. Acad. Sci. Georgian SSR 12(1), 105–117 (1973) (in Russian).

    Google Scholar 

  26. Krylov, V.I., Bobkov, V.V., Monastyrnyi, P.I.: Computational Methods. II. Nauka, Moscow (1977). (in Russian)

    Google Scholar 

  27. Dobronets, B.S., Shaidurov, V.V.: Bilateral Numerical Methods. Nauka, Novosibirsk (1990). (in Russian)

    Google Scholar 

  28. Aptekarev, A.I., Yattselev, M.L.: Pad´e approximants for functions with branch points-strong asymptotics of Nuttall-Stahl polynomials. Acta Math. 215, 217–280 (2015)

    Article  MathSciNet  Google Scholar 

  29. Baker, G.A., Graves-Morris, P.: Padé Approximants, 2nd edn. Cambridge University Press, New York (1996)

    Book  Google Scholar 

  30. Brezinski, C., Redivo-Zaglia, M.: New representations of Pad´e, Pad´e-type, and partial Pad´e approximants. J. Comput. Appl. Math. 284, 69–77 (2015)

    Google Scholar 

  31. Jones, W.B., Thron, W.J., Waadeland, H.: Analytic Theory of Continued Fractions. Lecture Notes in Mathematics, vol. 932. Springer-Verlag, Berlin-New York (1982)

    Google Scholar 

  32. Gonchar, A.A.: On the convergence of a rational approximation of analytic functions. Proc. Steklov Math. Inst. 166, 52–60 (1984)

    MATH  Google Scholar 

  33. Butusov, D., Karimov, A., Tutueva, A., Kaplun, D., Nepomuceno, E.: The effects of Padé numerical integration in simulation of conservative chaotic systems. Entropy 21(4), 362–369 (2019)

    Article  Google Scholar 

  34. Hofreither, C.A.: Unified view of some numerical methods for fractional diffusion, RICAM. Austrian Academy of Sciences, Report No 12, p. 21 (2019)

    Google Scholar 

  35. Lozi, R., Pogonin, V.A., Pchelintsev, A.N.: A new accurate numerical method of approximation of chaotic solutions of dynamical model equations with quadratic nonlinearities. Chaos Soliton Fractals 91, 108–114 (2016)

    Google Scholar 

  36. Pelekh, Y.M.: An approach to deducing approximate solution to the Cauchy problem for nonlinear differential equations. Ukrainian Math. J. 44(12), 1554–1560 (1992)

    Google Scholar 

  37. Saravana, A., Mages, N., Christopher, A.J.: A new computational method for smooth solution of first order nonlinear Cauchy problem. Int. J. Adv. Math. 5, 14–24 (2018)

    Google Scholar 

  38. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 3rd edn. John Wiley & Sons, London (2016)

    Google Scholar 

  39. Hall, G., Watt, J.M.: Modern Numerical Methods for Ordinary Differential Equations. Clarendon Press, Oxford (1976)

    MATH  Google Scholar 

  40. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations. I: Nonstiff Problems. Springer, Berlin (1990)

    Google Scholar 

  41. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, 2nd edn. Springer-Verlag, Berlin-Heidelberg-New York (2006)

    MATH  Google Scholar 

  42. Griffiths, D.F., Higham, D.J.: Numerical methods for ordinary differential equations. Initial value problems. Springer, Berlin (2010)

    Book  Google Scholar 

  43. Pelekh, Y.M.: Numerical methods of solving nonlinear integral equations of Volterra type. J. Math. Sci. 90(5), 2431–2435 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaroslav Pelekh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pelekh, Y., Kunynets, A., Mentynskyi, S., Fil, B., Pukach, P. (2021). Methods for Calculating a Mathematical Model for Determining the Electromagnetic Field in Conducting Ferromagnetic Layer. In: Shakhovska, N., Medykovskyy, M.O. (eds) Advances in Intelligent Systems and Computing V. CSIT 2020. Advances in Intelligent Systems and Computing, vol 1293. Springer, Cham. https://doi.org/10.1007/978-3-030-63270-0_32

Download citation

Publish with us

Policies and ethics