Skip to main content

Improving Seismic Wave Simulation and Inversion Using Deep Learning

  • Conference paper
  • First Online:
  • 1116 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1315))

Abstract

Accurate simulation of wave motion for the modeling and inversion of seismic wave propagation is a classical high-performance computing (HPC) application using the finite difference, the finite element methods and spectral element methods to solve the wave equations numerically. The paper presents a new method to improve the performance of the seismic wave simulation and inversion by integrating the deep learning software platform and deep learning models with the HPC application. The paper has three contributions: 1) Instead of using traditional HPC software, the authors implement the numerical solutions for the wave equation employing recently developed tensor processing capabilities widely used in the deep learning software platform of PyTorch. By using PyTorch, the classical HPC application is reformulated as a deep learning recurrent neural network (RNN) framework; 2) The authors customize the automatic differentiation of PyTorch to integrate the adjoint state method for an efficient gradient calculation; 3) The authors build a deep learning model to reduce the physical model dimensions to improve the accuracy and performance of seismic inversion. The authors use the automatic differentiation functionality and a variety of optimizers provided by PyTorch to enhance the performance of the classical HPC application. Additionally, methods developed in the paper can be extended into other physics-based scientific computing applications such as computational fluid dynamics, medical imaging, nondestructive testing, as well as the propagation of electromagnetic waves in the earth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://pytorch.org/.

References

  1. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differentiation in machine learning: a survey. J. Mach. Learn. Res. 18(1), 5595–5637 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Richardson, A.: Seismic full-waveform inversion using deep learning tools and techniques (2018). https://arxiv.org/pdf/1801.07232v2.pdf

  3. Hughes, T.W., Williamson, I.A.D., Minkov, M., Fan, S.: Wave physics as an analog recurrent neural network (2019). https://arxiv.org/pdf/1904.12831v1.pdf

  4. Hewett, R.J., Demanet, L., The PySIT Team: PySIT: Python seismic imaging toolbox (January 2020). https://doi.org/10.5281/zenodo.3603367

  5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  6. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling (2014)

    Google Scholar 

  7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)

    Google Scholar 

  8. Plessix, R.-E.: A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophys. J. Int. 167(2), 495–503 (2006). https://doi.org/10.1111/j.1365-246X.2006.02978.x

    Article  Google Scholar 

  9. Tromp, J., Komatitsch, D., Liu, Q.: Spectral-element and adjoint methods in seismology. Commun. Comput. Phys. 3(1), 1–32 (2008)

    MATH  Google Scholar 

  10. Schuster, G.: Seismic Inversion. Society of Exploration Geophysicists (2017). https://library.seg.org/doi/abs/10.1190/1.9781560803423

  11. Ruder, S.: An overview of gradient descent optimization algorithms (2016)

    Google Scholar 

  12. Zeiler, M.D.: ADADELTA: an adaptive learning rate method (2012)

    Google Scholar 

  13. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Huang, L., Polanco, M., Clee, T.E.: Initial experiments on improving seismic data inversion with deep learning. In: 2018 New York Scientific Data Summit (NYSDS), August 2018, pp. 1–3 (2018)

    Google Scholar 

Download references

Acknowledgment

This research work is supported by the US National Science Foundation (NSF) awards ##1649788, #1832034 and by the Office of the Assistant Secretary of Defense for Research and Engineering (OASD(R&E)) under agreement number FA8750-15-2-0119. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the US NSF, or the Office of the Assistant Secretary of Defense for Research and Engineering (OASD(R&E)) or the U.S. Government. The authors would also like to thank the XSEDE for providing the computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, L., Clee, E., Ranasinghe, N. (2020). Improving Seismic Wave Simulation and Inversion Using Deep Learning. In: Nichols, J., Verastegui, B., Maccabe, A.‘., Hernandez, O., Parete-Koon, S., Ahearn, T. (eds) Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI. SMC 2020. Communications in Computer and Information Science, vol 1315. Springer, Cham. https://doi.org/10.1007/978-3-030-63393-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63393-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63392-9

  • Online ISBN: 978-3-030-63393-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics