Skip to main content

Algebraic Approach for Confidence Evaluation of Assurance Cases

  • Conference paper
  • First Online:
Formal Methods and Software Engineering (ICFEM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12531))

Included in the following conference series:

  • 500 Accesses

Abstract

This paper presents a preliminary study on a method to evaluate the confidence of assurance cases using an abstract algebra mapped to a partial order. Unlike conventional quantitative methods for confidence evaluation, our approach is purely qualitative and employs a small number of axioms. It does not rely on numerical parameters that are difficult to determine in practice. Furthermore, our method can be regarded as an abstraction over numerical methods that use probability. To illustrate that our method provides a rigorous foundation for the qualitative evaluation of assurance cases, we give a sufficient condition for a multi-legged argument to improve confidence. Finally, we use our method to evaluate a concrete goal structuring notation (GSN) diagram that argues that a computer simulation of a biological system is reliable. These findings suggest that methods based on abstract axioms are viable approaches for confidence evaluation of assurance cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alden, K., Andrews, P.S., Polack, F.A., Veiga-Fernandes, H., Coles, M.C., Timmis, J.: Using argument notation to engineer biological simulations with increased confidence. J. R. Soc. Interface 12(104), 20141059 (2015)

    Article  Google Scholar 

  2. Assurance Case Working Group: Goal structuring notation community standard version 2, January 2018. https://scsc.uk/r141B:1

  3. Bloomfield, R., Littlewood, B.: Multi-legged arguments: the impact of diversity upon confidence in dependability arguments. In: Proceedings of the International Conference on Dependable Systems and Networks, June 2014, pp. 25–34 (2003)

    Google Scholar 

  4. Bloomfield, R.E., Littlewood, B., Wright, D.: Confidence: its role in dependability cases for risk assessment. In: Proceedings of The 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2007, Edinburgh, UK, 25–28 June 2007, pp. 338–346. IEEE Computer Society (2007)

    Google Scholar 

  5. Fine, K.: Truthmaker Semantics. A Companion to the Philosophy of Language, February 2017, pp. 556–577 (2017)

    Google Scholar 

  6. Guiochet, J., Do Hoang, Q.A., Kaaniche, M.: A model for safety case confidence assessment. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9337, pp. 313–327. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24255-2_23

    Chapter  Google Scholar 

  7. Maksimov, M., Kokaly, S., Chechik, M.: A survey of tool-supported assurance case assessment techniques. ACM Comput. Surv. 52(5), 1–34 (2019)

    Article  Google Scholar 

  8. Matsuno, Y.: A Design and implementation of an assurance case language. In: Proceedings - 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2014, pp. 630–641 (2014)

    Google Scholar 

  9. Rushby, J.: Assurance and assurance cases. In: Pretschner, A., Peled, D., Hutzelmann, T. (eds.) Dependable Software Systems Engineering (Marktoberdorf Summer School Lectures, 2016), NATO Science for Peace and Security Series D, pp. 207–236, vol. 50. IOS Press, October 2017

    Google Scholar 

  10. The MISRA consortium: Guidelines for automotive safety arguments (2019)

    Google Scholar 

  11. Varzi, A.: Mereology. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, spring 2019 (2019)

    Google Scholar 

  12. Wang, R., Guiochet, J., Motet, G., Schön, W.: Modelling confidence in railway safety case. Saf. Sci. 110(December), 286–299 (2018)

    Article  Google Scholar 

  13. Wang, R., Guiochet, J., Motet, G., Schön, W.: Safety case confidence propagation based on dempster-shafer theory. Int. J. Approx. Reason. 107, 46–64 (2019)

    Article  MathSciNet  Google Scholar 

  14. Weinstock, C.B., Goodenough, J.B., Klein, A.Z.: Measuring assurance case confidence using baconian probabilities. In: 2013 Proceedings of ASSURE 2013, pp. 7–11, IEEE Computer Society, San Francisco (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoriyuki Yamagata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yamagata, Y., Matsuno, Y. (2020). Algebraic Approach for Confidence Evaluation of Assurance Cases. In: Lin, SW., Hou, Z., Mahony, B. (eds) Formal Methods and Software Engineering. ICFEM 2020. Lecture Notes in Computer Science(), vol 12531. Springer, Cham. https://doi.org/10.1007/978-3-030-63406-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63406-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63405-6

  • Online ISBN: 978-3-030-63406-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics