Abstract
We study the problem of learning deterministic one-clock timed automata in the framework of PAC (probably approximately correct) learning. The use of PAC learning relaxes the assumption of having a teacher that can answer equivalence queries exactly, replacing it with approximate answers from testing on a set of samples. The framework provides correctness guarantees in terms of error and confidence parameters. We further discuss several improvements to the basic PAC algorithm. This includes a special sampling method, and the use of comparator and counterexample minimization to reduce the number of equivalence queries. We implemented a prototype for our learning algorithm, and conducted experiments on learning the TCP protocol as well as a number of randomly generated automata. The results demonstrate the effectiveness of our approach, as well as the importance of the various improvements for learning complex models.
This work has been partially funded by NSFC under grant No. 61972284, No. 61625206, No. 61732001 and No. 61836005, and by the CAS Pioneer Hundred Talents Program under grant No. Y9RC585036.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aichernig, B.K., Tappler, M.: Efficient active automata learning via mutation testing. J. Autom. Reason. 63(4), 1103–1134 (2019)
Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class of timed automata. Theor. Comput. Sci. 211(1), 253–274 (1999)
An, J., Chen, M., Zhan, B., Zhan, N., Zhang, M.: Learning one-clock timed automata (full version). arXiv:1910.10680 (2019)
An, J., Chen, M., Zhan, B., Zhan, N., Zhang, M.: Learning one-clock timed automata. In: Biere, A., Parker, D. (eds.) TACAS 2020. LNCS, vol. 12078, pp. 444–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45190-5_25
An, J., Wang, L., Zhan, B., Zhan, N., Zhang, M.: Learning real-time automata. Science China Information Sciences, in press. https://doi.org/10.1007/s11432-019-2767-4
Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)
Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the correspondence between conformance testing and regular inference. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31984-9_14
van den Bos, P., Smetsers, R., Vaandrager, F.: Enhancing automata learning by log-based metrics. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 295–310. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0_19
Chen, Y.F., et al.: PAC learning-based verification and model synthesis. In: ICSE 2016, pp. 714–724. IEEE (2016)
Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans. Softw. Eng. 4(3), 178–187 (1978)
Drews, S., D’Antoni, L.: Learning symbolic automata. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 173–189. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_10
En-Nouaary, A., Dssouli, R., Khendek, F.: Timed WP-method: testing real-time systems. IEEE Trans. Softw. Eng. 28(11), 1023–1038 (2002)
En-Nouaary, A., Dssouli, R., Khendek, F., Elqortobi, A.: Timed test cases generation based on state characterization technique. In: RTSS 1998, pp. 220–229. IEEE (1998)
Fujiwara, S., Bochmann, G.V., Khendek, F., Amalou, M., Ghedamsi, A.: Test selection based on finite state models. IEEE Trans. Softw. Eng. 17(6), 591–603 (1991)
Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata. Theor. Comput. Sci. 411(47), 4029–4054 (2010)
Howar, F., Jonsson, B., Vaandrager, F.: Combining black-box and white-box techniques for learning register automata. In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp. 563–588. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91908-9_26
Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a survey. Proc. IEEE 84(8), 1090–1123 (1996)
Lin, S.-W., André, É., Dong, J.S., Sun, J., Liu, Y.: An efficient algorithm for learning event-recording automata. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 463–472. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24372-1_35
Maler, O., Mens, I.-E.: Learning regular languages over large alphabets. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 485–499. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_41
Maler, O., Mens, I.-E.: A generic algorithm for learning symbolic automata from membership queries. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 146–169. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9_8
Mediouni, B.L., Nouri, A., Bozga, M., Bensalem, S.: Improved learning for stochastic timed models by state-merging algorithms. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 178–193. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8_13
Mens, I.: Learning regular languages over large alphabets. (Apprentissage de langages réguliers sur des alphabets de grandes tailles). Ph.D. thesis, Grenoble Alpes University, France (2017). https://tel.archives-ouvertes.fr/tel-01792635
Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata: closing a decidability gap. In: Proceedings of the 19th IEEE Symposium on Logic in Computer Science, LICS 2004, pp. 54–63. IEEE Computer Society (2004)
Pastore, F., Micucci, D., Mariani, L.: Timed k-Tail: automatic inference of timed automata. In: Proceedings of 10th IEEE International Conference on Software Testing, Verification and Validation, ICST 2017, pp. 401–411. IEEE Computer Society (2017)
Pferscher, A., Aichernig, B., Tappler, M.: From passive to active: learning timed automata efficiently. In: NFM 2020 (2020). https://ti.arc.nasa.gov/events/nfm-2020/
Shen, Y.N., Lombardi, F., Dahbura, A.T.: Protocol conformance testing using multiple UIO sequences. IEEE Trans. Commun. 40(8), 1282–1287 (1992)
Smetsers, R., Volpato, M., Vaandrager, F.W., Verwer, S.: Bigger is not always better: on the quality of hypotheses in active automata learning. In: ICGI 2014, pp. 167–181 (2014). http://proceedings.mlr.press/v34/smetsers14a.html
Tappler, M., Aichernig, B.K., Larsen, K.G., Lorber, F.: Time to learn – learning timed automata from tests. In: André, É., Stoelinga, M. (eds.) FORMATS 2019. LNCS, vol. 11750, pp. 216–235. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29662-9_13
Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95 (2017)
Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
Verwer, S., De Weerdt, M., Witteveen, C.: The efficiency of identifying timed automata and the power of clocks. Inf. Comput. 209(3), 606–625 (2011)
Verwer, S., de Weerdt, M., Witteveen, C.: Efficiently identifying deterministic real-time automata from labeled data. Mach. Learn. 86(3), 295–333 (2011). https://doi.org/10.1007/s10994-011-5265-4
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Shen, W., An, J., Zhan, B., Zhang, M., Xue, B., Zhan, N. (2020). PAC Learning of Deterministic One-Clock Timed Automata. In: Lin, SW., Hou, Z., Mahony, B. (eds) Formal Methods and Software Engineering. ICFEM 2020. Lecture Notes in Computer Science(), vol 12531. Springer, Cham. https://doi.org/10.1007/978-3-030-63406-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-63406-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63405-6
Online ISBN: 978-3-030-63406-3
eBook Packages: Computer ScienceComputer Science (R0)