
HAL Id: hal-02987484
https://hal.science/hal-02987484

Submitted on 3 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accessibility and serious games: What about Entity-
Component-System software architecture?

Mathieu Muratet, Délia Garbarini

To cite this version:
Mathieu Muratet, Délia Garbarini. Accessibility and serious games: What about Entity- Component-
System software architecture?. GALA 2020, Dec 2020, Laval, France. �hal-02987484�

https://hal.science/hal-02987484
https://hal.archives-ouvertes.fr

Accessibility and serious games: What about Entity-

Component-System software architecture?

Mathieu Muratet1 and Délia Garbarini2

1 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France, Université Paris Lumière, INS

HEA, 92100 Suresnes, France

mathieu.muratet@lip6.fr
2 Université Paris Lumière, Paris 8, F-93526 Saint-Denis, France

Abstract. Video games are an integral part of popular culture. The video game

industry faces challenges with the increase in players’ numbers and application

areas including serious games. The increase in the number of players includes

disabled players. Therefore, serious games have to consider these audiences who

may be affected by one or more temporary or ongoing disabilities. Universally

accessible games (UA-Games) aim to create interfaces that can be accessed and

manipulated by the largest number of players. Currently few serious games in-

clude accessibility features, while accessibility should be considered at the be-

ginning of the serious game design. Then how can we help designers and devel-

opers to include accessible features in an existing serious game? To this end,

game engines must be efficient but also scalable and modular. This paper studies

the interest of the Entity-Component-System (ECS) software architecture to in-

tegrate accessibility features in an existing serious game. As a case study, we will

take a serious game developed with ECS yet not accessible: E-LearningScape.

We will present the accessible features that we have integrated into the serious

game and discuss the pros and cons of this approach. This feedback shows us that

ECS provides very useful design flexibility to integrate unanticipated interaction

features into serious games.

Keywords: Accessibility feature, data oriented programming, Entity-Compo-

nent-System, serious games, software architecture, universal design.

1 Introduction

Nowadays, video games have become a leisure activity for a large number of people.

The Entertainment Software Association announces that 65% of American adults play

video games [1]. 54% of them are male and 47% are female. On a global scale, video

games represent an object of sharing, socialization, and learning that allows players to

interact with the world, to be part of the community and meet people.

However, a large number of people face difficulties in playing video games due to

one or more disabilities. Video games stimulate eyesight, hearing and touch, and re-

quire players to analyze this multimodal information and perform motor actions in re-

turn (i.e.: ability to hold a joystick or perform large movements) [2, 3, 4].

2

The increase in the number of players includes disabled players whose temporary or

chronic impairments reveal inaccessible gaming situations or interaction modalities. To

offset this problem, video games have to be adapted to their entire audience. Various

approaches attempt to tackle this problem and one is to design universally accessible

video games (UA-Games) [2, 5, 6, 7]. This method aims to create many interfaces for

everyone, so as to be accessible to as many players as possible with their abilities and

disabilities. However, in their survey, Yuan et al. [4] found that small number of games

incorporated the “design for all” paradigm and that few games implemented a multi-

modal approach where multiple interfaces are designed for different impairments. One

challenge is thus to help designers and developers to update existing games in order to

incorporate accessibility features when they have not been anticipated.

To reach this objective, the game engine architecture must be flexible enough, during

the game development process, to allow to add new features, to test different interaction

modalities and to propose several representations of information. In this paper, we fo-

cus on Entity-Component-System (ECS) software architecture. This growing software

architecture seems to embed mechanisms favoring modularity and scalability. It is a

data-oriented approach based on the notion of composition. Several studies show that

ECS can address objected-oriented programming limitations in the field of video games

development [5, 8, 9].

Thus, our research question in this paper is: Does ECS architecture help to add

unanticipated accessibility functionalities inside a serious game?

In the next section, we will discuss the challenges of adaptation in serious games.

Then, in section three, we will present, the ECS software architecture used to develop

the serious game studied in this article. In section four we will introduce the methodol-

ogy we follow in this research and in section five, we will present results about the pros

and cons of ECS architecture for integrating new accessibility features, before conclud-

ing.

2 Serious games adaptation issues

Serious games are multimodal applications. They require players to have sensory, men-

tal and motor skills. These skills are required to interpret stimuli produced by the game

and to control the game through input device control (handle a controller, keyboard,

mouse, touchscreen interface, etc.) [2, 3, 4, 10]. Yuan et al. [4] identified two categories

of stimuli. The first one is essential to achieve a good understanding of the game, as a

player who does not perceive these stimuli will not be able to play it. The second one

complete the first and is not essential to understanding the game. In the majority of

games, primary stimuli are essentially visual while secondary stimuli exploit hearing

and haptic (controller vibration) features.

Thus, Bierre et al. [6] identified that the inaccessibility of video games is mainly due

to the lack of perception of primary and secondary stimuli (because of visual or hearing

impairments for instance) but also to the player’s ability to analyze these stimuli and

provide new actions in return. An overload of visual and hearing stimuli can place play-

ers with cognitive impairment in serious difficulty processing information and deciding

3

which answer to provide. A motor impairment will limit the player’s abilities to carry

out the response if it results in in-game control manipulations, especially in a limited

time context.

Much research contributes to producing knowledge on video game accessibility.

Some studies analyze the difficulties met by players [4] and others focus on new func-

tionalities to make video games more accessible [2]. The improvement of video game

accessibility is also inspired by the standards initially developed for websites (WCAG1

et W3C2). There are indeed similarities, in particular for interfaces and menu manage-

ment (button spacing, alternative texts, subtitles, animations, contrast modification,

text-to-speech). More specifically, in the field of video games, the Game Accessibility

Guideline [11] initiative offers a full list of recommendations to improve the accessi-

bility of video games according to the type of impairment.

The UA-Games approach and the works mentioned above are in line with research

conducted in TEL (Technology Enhanced Learning) and especially on the three dimen-

sions of adaptation [12] (adapted, adaptable and adaptive). Applied to the field of seri-

ous games, this theory allows us to define adapted, adaptable and adaptive serious

games.

Adapted serious games target a particular profile of players. Interactions are set up

during the design phase. As the environment creates disabilities, a serious game adapted

to a particular impairment may consequently generate inaccessibility for other players.

The serious game “A blind Legend” [13] is a singular example of this. This serious

game puts the player in the shoes of a blind character for whom the only channel of

communication used is sound. This serious game is therefore by nature inaccessible to

players with a hearing impairment.

Adaptable serious games are the most widespread. Recent serious games integrate

more and more menus allowing players to customize the interaction modalities as they

wish (moving speed of the pointing device, colors/contrasts, keys/control buttons, dif-

ficulty level, etc.). These settings allow all players (including disabled players) to adapt

the serious game to their skills in order to improve their playing experience.

Adaptive serious games have been less common because they have to include mod-

els (player’s model and/or model of challenge resolution process) in order to automat-

ically adapt interfaces and content to the difficulties encountered by the players.

Ergonomics research on activity theories provide knowledge that can help to under-

stand how players master serious games. Activity theories aim to understand a subject’s

activity when trying to achieve a goal [14]. So, activity is different from a prescribed

task. A task specifies what needs to be done (i.e. the goal) and the procedure to achieve

this goal. An activity is singular, located, finalized and mediatized by an instrument

[15]. Here, an instrument refers to an artifact associated with schemes. According to

activity theories, we consider that a video game engine is an artifact on which the play-

ers will build schemes to interact with it. These schemes can only be built if the player

is able to access the primary (or even secondary) stimuli and provide actions in return.

A serious game uses an engine (the artifact) and offers objectives to the players in the

1 WCAG = Web Content Accessibility Guidelines
2 W3C = World Wide Web Consortium

4

form of a set of missions or quests to complete or a record to beat. The rules of the

serious game constrain the player’s actions and make it possible to calibrate the com-

plexity of a game situation. Thus, a serious game can be abstracted as a task according

to the activity theories. The player’s activity is therefore what is accomplished by the

player according to his/her skills and it depends on the accessibility of the engine and

the complexity of the situations offered (including goals). This incremental process

named instrumental genesis allows players to appropriate the artifact (transforming ar-

tifact into instrument) and involves two types of transformation: instrumentalization,

where the player will adapt the artifact to his/her needs (dimension of adaptable serious

games) and instrumentation, in which the artifact influences the player’s actions (di-

mension of adapted and adaptive serious games).

Thus, improving serious game accessibility consists in supporting the instrumental

genesis defined in activity theories and working on the three dimensions of adaptation

(adapted, adaptable and adaptive).

3 Entity-Component-System: a software architecture coming

from video games

Video game and serious game developments are mainly based on the object-oriented

programming paradigm (OOP), whose C#, C++ and Java are the most used program-

ming languages. However, OOP principles such as encapsulation, message sending and

inheritance can make game engine maintenance and scalability difficult. With an ob-

ject-oriented approach, developers model game elements in the form of classes that

may be specialized into subclasses, etc. The video game development process is highly

iterative, adding new game mechanisms or interaction modalities may request changes

in the modeling initially designed. Then, these modifications may have significant con-

sequences on developments and require code refactoring, which is expensive in devel-

opment time and a possible source of bugs. The rigidity of the inheritance tree is a

hindrance in this context.

The Entity-Component-System (ECS) is a software architecture mainly used for de-

veloping video games [16, 17]. This architecture uses a data-oriented approach and is

built around three concepts. Entities (first concept) represent game objects but do not

contain either data or methods. An entity is a simple reference to a collection of com-

ponents (second concept) that contain data. Components describe an entity’s aspects

such as its color, size, speed, etc. A component may be added or removed dynamically

to an entity. Systems (third concept) define the game logic. They access the components

of the entities in order to process and update them. They modify the game data and then

update the simulation.

ECS is a software architecture in which simulation is data-driven. ECS is based on

composition whereas the object-oriented approach focuses on encapsulation and inher-

itance. ECS was developed to answer two issues: improving computer code modularity

and improving game engine performance. As for modularity, the data-driven approach

allows to add new game mechanisms or interaction modalities with a limited impact on

5

the existing code. To integrate a new feature, the developer has to (1) define the com-

ponents required to store the data, (2) add these components to the entities concerned

and (3) implement systems that will process these components. Contrary to classes in

OOP that contain data and logic, in ECS they are separated: data in components and

logic in systems. From a performance point of view, ECS allows to control the organi-

zation of data in memory and optimizes access to components. In this paper, we are

studying ECS for its modularity promises and we want to evaluate it to add accessibility

features. We are not hereby studying questions of optimization.

Garcia et al. [5] also address this architecture based on component and data-driven

approach for the development of accessible video games. They study the interest of

ECS to create different game object representations that can be changed in real-time

and without consequences on the game logic. Authors create components that contain

the data of the different stimuli (graphic, audio, haptic) and specific systems to manage

these components. When the game is running, the modal presentation sent to the player

depends on the components attached to a game entity. It is therefore possible to switch

from one representation to another in real-time, according to the needs and abilities of

the player, offering a more accessible game experience. Moreover, this research high-

lights the advantage of this architecture for using an external data source (XML file) in

order to define game-specific settings. Players could thus access this file and create a

profile by customizing entities, modifying presets and creating default configurations

adapted to their needs.

The runtime ECS advantages promoted by Garcia et al. [5] confirms our hypothesis

that ECS architecture is adapted and useful to more easily modify an existing video

game whose accessibility was not initially considered during the design step.

4 Methodology

As a preamble to this section let us introduce the artifact we have been working on. E-

LearningScape (see Fig. 1) is a numerical adaptation of a physical escape game [19].

In this numerical adaptation, the participants (in teams of 2 to 5 players) play the role

of a sandman immersed in the dream of Camille, a young lecturer on the eve of teaching

her first lesson. Their challenge will be to help Camille structure her thought in her

dream by solving puzzles using pedagogical concepts. The team members gather

around a computer. One player controls the game and moves inside the virtual universe

in a first-person navigation to discover fragments of dreams giving access to material

in the real world. All members of the team solve puzzles inside and outside the game,

these two facets feeding each other. E-LearningScape has several objectives, the main

one being to test knowledge in the field of education and the other ones to promote

team work and cohesion.

E-LearningScape was initially developed without accessibility constraints in mind.

It is an open-source and totally designed with ECS architecture (it was developed with

Unity and the FYFY plugin [18]).

6

Fig. 1. E-LearningScape screenshot

This serious game is an interesting case study for our research question, which is:

Does ECS architecture help to add unanticipated accessibility functionalities inside a

serious game?

To tackle our research question, the serious game was analyzed with the Game Ac-

cessibility Guideline grid [11]. These guidelines are divided into six categories (motor,

cognitive, vision, hearing, speech and general), each one broken down into three levels

(basic, intermediate and advanced). This analysis, performed and discussed by two ex-

perts in accessibility, aimed to recommend accessibility functionalities suitable to the

serious game. Based on these recommendations, a game developer incorporated the

new functionalities inside the serious game. This developer was not part of the original

team that developed the serious game and was not familiar with ECS architecture. The

developer got support from an expert developer who was a member of the initial pro-

ject. Each new functionality was studied to evaluate the advantages and drawbacks of

ECS architecture. For each of them, the developer reflected on the following questions:

Is it possible to integrate the functionality only using Unity editor (without a line of

code)? How many Unity editor manipulations are required with a classical Unity script

to integrate the functionality? Does a system in which the functionality can be inte-

grated exist? Which components and systems have to be created to integrate the func-

tionality? Which choices make future updates easier?

5 Results

5.1 E-LearningScape analysis

Among the 121 recommendations included into the Game Accessibility Guideline grid

[11], experts in accessibility have retained 67 criteria that make sense for E-Learning-

Scape. For instance, they excluded recommendations on voice subtitles, multiplayer

and chat features, and virtual reality and mobile devices because they were judged not

consistent for the serious game. Among the 67 criteria identified by experts in accessi-

bility, 10 were already integrated into the game (for instance: including tutorials, al-

lowing reminders of current objectives during gameplay, ensuring no essential infor-

mation is covered by sounds alone, etc.). The developer updated the game and added

34 supplementary recommendations to fulfill the basic level of motor, cognitive and

7

vision categories (hearing and speech categories are not requested by E-Learning-

Scape). Let us give some examples of new features that were incorporated: supporting

more than one input devices, including options to adjust the sensitivity of controls, us-

ing simple clear text formatting, ensuring no essential information is covered by color

alone, etc. The current version of the game includes 17 basic recommendations over

the 18 suitable ones, 22 intermediate recommendations over the 35 suitable ones, and

5 advanced recommendations over the 14 suitable ones. Fig. 2 shows details about ac-

cessibility completion of the game before and after the updates.

Fig. 2. Accessibility recommendations integrated into the game

5.2 Adapted serious game

Modifications have been made to change serious game interfaces and interactions. To

complete the default mouse/keyboard inputs, the developer increased the diversity of

control devices: the serious game is now playable with the Xbox one controller, the

Microsoft Xbox adaptive (XAC), the Nintendo Nunchuck and specific controllers. The

Unity environment provides native tools to abstract controllers. In this case, ECS did

not bring any advantages. As for controllers’ abstraction, the developer reviewed menu

navigation and added visual effects to help players to easily identify the UI element

focused on. Similarly, Unity’s native tools are very efficient to define interface naviga-

tion order and highlight interactive UI elements. Other functionalities have been inte-

grated without the ECS layer because they were relating to static graphical parameters:

color review (limitation of red and green colors), black outline on textual elements, etc.

All these accessibility features were editable inside Unity’s editor and did not require

programming.

In the first version of the serious game, in-game interactive objects were highlighted

with visual effects. Experts’ recommendations suggested dubbing this information with

audio notifications. With a classic use of Unity, the developer would create a new script,

add it manually to all interactive game objects and configure them in Unity inspector

with the risk of forgetting one of them (the game contains more than 60 interactive

game objects). In this case, ECS enables to easily add this functionality. Indeed, a sys-

tem already existed to highlight interactive game objects. The developer just added one

line of code in this system to dynamically add a new component on the highlighted

game objects. This new component contains sound data to play. Then he created a new

system to process sound components and play audio notifications. The developer could

play sound directly inside the existing highlighter system, yet chose to separate it inside

8

a new system. This makes the audio notification system independent from the high-

lighter system. Thus, the audio system can be turned off by the player without any con-

sequence on visual notifications. Moreover, the audio system may be used in other

cases that require audio notifications (changing room, enigma success/fail, etc.). The

consequences of adding this new functionality to the existing code were very limited.

ECS was also useful to easily identify the different functionalities of the game that

a developer could change. Indeed, each functionality is implemented inside a system,

and updating a functionality consists in identifying the concerned system and focusing

attention on it. Thus, the developer, who did not master ECS at the beginning of this

work found it easier to study the list of systems to understand the game logic than pars-

ing game objects hierarchy and components interdependences. He updated the system

that manages interactive game objects to enable the player to hold down or successively

press a button; or to drag and drop a game object without holding down a button. Fi-

nally, he modified the system that manages the camera to add a zoom function and to

switch point of view (first/third person).

5.3 Adaptable serious game

Several recommendations concern menus, to enable players to personalize serious

game interfaces according to their needs. The developer added functions to change con-

trols, graphics, and sounds. For instance, the player can disable/enable animations,

change moving speed and camera rotation speed, adjust music and effect volumes, grow

cursor, and update scene luminosity. For all of these new features, the default tools of

Unity were sufficient.

On the other hand, ECS was useful to apply massive changes to game objects. One

recommendation is that players have to be able to change text font, to switch from the

default non-accessible font to an accessible one. With a classical usage of Unity, the

developer would have added a new script to each textual game object or created a text

manager and bound each textual game object in (more than 570 game objects are con-

cerned). In these two solutions, designers risk making errors when a new text is added

to the game, and forgetting to add the accessible script to the game object or to bind the

game object to the text manager. With the ECS approach, the developer added a new

system and created a family to filter game objects that contain default text components.

When the player switches text font, the system updates all textual game objects in the

scene. Adding new accessible text into the game requests designers to simply add a

default textual game object to the scene without taking into account any accessibility

constraints (no script to add, no specific manager to bind). The same principle has been

applied to manage windows’ transparency.

5.4 Adaptive serious game

The adaptive dimension is present in this serious game with a monitoring module. This

functionality generates in-game hints to help players depending on their difficulties.

The monitoring module integrated into the game is compatible with ECS architecture

9

[20] and enables to monitor players’ activities either at the level of entities (local mon-

itoring) or at the level of families (set of entities – global monitoring).

Integrating this monitoring module requires a set of modifications in the existing

code, especially to produce tracks. The first challenge was to identify inside existing

programs in which the player’s actions were validated. ECS architecture helps to un-

derstand game design because each logic functionality is implemented inside a specific

system. Then the developer easily identified systems that manage player inventory,

moving, interactive objects, etc. Finally, producing tracks consisted in updating sys-

tems and adding one line of code to build the monitoring component (provided by the

monitoring module) with action data. This monitoring component is processed by the

monitoring module that labels the player’s actions (correct, too late, useless, etc.).

The second step was to create a new system to process results from the monitoring

module. This system chooses the next hint to be displayed to the player depending on

labeled actions aggregated over time, player progression, and time left. Generated hints

may suggest searching for a specific area, indicate a clue position, explain a bad answer,

and validate the fact that players have all the elements to resolve an enigma.

6 Conclusion

We began this paper by pointing out the importance of taking into consideration the

question of accessibility to serious games. We were interested in the cases in which

accessibility had not been taken into account in the early phases of development and

had to be integrated retrospectively. So, we studied the potential benefits of ECS archi-

tecture in this context. Our theoretical foundation is based on activity theories and the

three dimensions of adaptation (adapted, adaptable and adaptive).

We analyzed the serious game E-LearningScape and we added 34 supplementary

recommendations from the Game Accessibility Guideline grid [11].

The contribution of this paper concerns the analysis of updates made into the serious

game E-LearningScape. We found that Entity-Component-System architecture does

not bring added value to process singular and/or static game objects. In this case, the

classical features of Unity seem to be more effective. However, this work showed that

ECS is advantageous to carry out transformations impacting a large number of game

objects and to avoid repetitive manipulations that are a source of errors. We also found

that the principle of modularity and decomposition of the game’s features into systems,

allowed the developer to quickly identify the parts of the program to be modified.

Thus, the Entity-Component-System architecture seems to be interesting to help inte-

grating accessibility features into serious games, especially when these have not been

anticipated. In this research we worked on a serious game initially designed with ECS.

However, we think that this approach is also practical for non ECS serious games made

with Unity because FYFY and Unity perfectly fit together and complement each other.

We plan to check this hypothesis in future research.

Acknowledgements. We thank Séverine Maillet for comments on the paper.

10

References

1. ESA Essential Facts About Computer And Video Game Industry,

https://www.theesa.com/esa-research/2019-essential-facts-about-the-computer-and-video-

game-industry/, last accessed 2020/03/19.

2. Grammenos, D., Savidis, A., Stephanidis, C.: Designing Universally Accessible Games.

ACM Computers in Entertainment, vol. 7, no. 1, pp. 29 (2009).

3. McCrindle, R. J., Symons, D.: Audio space invaders. In: Third International Conference on

Disability, Virtual Reality and Associated Technologies (2000).

4. Yuan, B., Folmer E., Harris, F.: Game accessibility: A survey. Universal Access in the In-

formation Society, vol. 10, pp. 81–100 (2011).

5. Garcia, F. E., de Almeida Neris, V. P.: A Data-Driven Entity-Component Approach to De-

velop Universally Accessible Games. Universal Access in Human-Computer Interaction,

vol. 8514, pp. 537–548 (2014).

6. Bierre, K., Chetwynd, J., Ellis, B., Hinn, D. M., Ludi, S., Westin, T.: Game Not Over: Ac-

cessibility Issues in Video Games. In: Human-computer interaction (2005).

7. Grammenos, D., Savidis, A., Stephanidis, C.: Unified Design of Universally Accessible

Games. In: Universal Access in Human-Computer Interaction, Beijing (2007).

8. Rafaillac, T., Huot, S.: Polyphony: Programming Interfaces and Interactions with the Entity-

Component-System Model. In: 11th ACM SIGCHI Symposium on Engineering Interactive

Computing Systems, Valencia, Spain (2019).

9. Gestwicki, P.: The entity system architecture and its application in an undergraduate game

development studio. In: International Conference in the Foundations of Digital Games,

(2012).

10. Bierre, K., Hinn, M., Martin, T., McIntosh, M., Snider, T., Stone K., Westin, T.: Accessibil-

ity in Games: Motivations and Approaches. In: The International Game Developers Associ-

ation (2004).

11. Game Accessible Guidelines, http://gameaccessibilityguidelines.com/full-list/, last accessed

2020/03/11.

12. Hussaan, A. M.: Generation of Adaptive Pedagogical Scenarios in Serious Games. Univer-

sité Lyon 2, Lyon, France (2012).

13. A Blind Legend, http://www.ablindlegend.com/, last accessed 2020/03/11.

14. Daniellou, F., Rabardel, P.: Activity-oriented approaches to ergonomics: some traditions and

communities. Theoretical Issues in Ergonomics Science, vol. 6, no. 5, pp. 353–357 (2005).

15. Forcisi, L. A., Decortis, F.: Children’s Creativity at School: Learning to Produce Multimedia

Stories. In: Congress of the International Ergonomics Association (2018).

16. Bilas, S.: A Data-Driven GameObject System. In: Game Developers Conference (2002).

17. Capdevila, B.: Serious game architecture and design: modular component-based data-driven

entity system framework to support systemic modeling and design in agile serious game

developments. Université Pierre et Marie Curie, Paris, France (2013).

18. FYFY, https://github.com/Mocahteam/FYFY, last accessed 2020/03/11.

19. LearningScape, https://sapiens-uspc.com/projets-innovants/learningscape-2/, last accessed

2020/03/11.

20. Muratet, M., Yessad, A., Carron, T.: Understanding Learners’ Behaviors in Serious Games.

In: Advances in Web-Based Learning – ICWL 2016, Rome, Italy (2016).

