Abstract
We define two graph transformations, one by parallelizing graph rewrite rules, the other by taking quotients of graphs. The former consists in the exhaustive application of local transformations defined by graph rewrite rules expressed in a set-theoretic framework. Compared with other approaches to parallel rewriting, we allow a substantial amount of overlapping only restricted by a condition called the effective deletion property. This transformation can be reduced by factoring out possibly many equivalent matchings by the automorphism groups of the rules. The second transformation is based on the use of equivalence relations over graph items and offers a new way of performing simultaneous merging operations. The relevance of combining the two transformations is illustrated on a running example.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrew, R.B., Sherman, A.H., Weiser, A.: Some refinement algorithms and data structures for regular local mesh refinement (1983)
Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)
Baldan, P., Gadducci, F., Montanari, U.: Concurrent rewriting for graphs with equivalences. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 279–294. Springer, Heidelberg (2006). https://doi.org/10.1007/11817949_19
Boronat, A., Heckel, R., Meseguer, J.: Rewriting logic semantics and verification of model transformations. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 18–33. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00593-0_2
Boy de la Tour, T., Echahed, R.: A set-theoretic framework for parallel graph rewriting. CoRR (abs/1808.03161) (2018)
Boy de la Tour, T., Echahed, R.: True parallel graph transformations: an algebraic approach based on weak spans. CoRR (abs/1904.08850) (2019)
Brenas, J.H., Echahed, R., Strecker, M.: Verifying graph transformation systems with description logics. In: Lambers, L., Weber, J. (eds.) ICGT 2018. LNCS, vol. 10887, pp. 155–170. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92991-0_10
Corradini, A., Duval, D., Echahed, R., Prost, F., Ribeiro, L.: AGREE – algebraic graph rewriting with controlled embedding. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 35–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21145-9_3
Corradini, A., et al.: On the essence of parallel independence for the double-pushout and sesqui-pushout approaches. In: Heckel, R., Taentzer, G. (eds.) Graph Transformation, Specifications, and Nets. LNCS, vol. 10800, pp. 1–18. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75396-6_1
Echahed, R., Janodet, J.-C.: Parallel admissible graph rewriting. In: Fiadeiro, J.L. (ed.) WADT 1998. LNCS, vol. 1589, pp. 122–138. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48483-3_9
Echahed, R., Maignan, A.: Parallel graph rewriting with overlapping rules. CoRR (abs/1701.06790) (2017)
Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformations, Volume 3: Concurrency, Parallelism and Distribution. World Scientific, Singapore (1999)
Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2
Ehrig, H., Kreowski, H.-J.: Parallelism of manipulations in multidimensional information structures. In: Mazurkiewicz, A. (ed.) MFCS 1976. LNCS, vol. 45, pp. 284–293. Springer, Heidelberg (1976). https://doi.org/10.1007/3-540-07854-1_188
Engelfriet, J., Rozenberg, G.: Node replacement graph grammars. In: Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1: Foundations, pp. 1–94 (1997)
Software Technology Research Group: The Clean Home Page. Radboud University, Nijmegen
Culik II, K., Lindenmayer, A.: Parallel graph generating and recurrence systems for multicellular development. Int. J. Gen. Syst. 3(1), 53–66 (1976). https://doi.org/10.1080/03081077608934737
Janssens, D., Rozenberg, G., Verraedt, R.: On sequential and parallel node-rewriting graph grammars. Comput. Graph. Image Process. 18(3), 279–304 (1982). https://doi.org/10.1016/0146-664X(82)90036-3
Kniemeyer, O., Barczik, G., Hemmerling, R., Kurth, W.: Relational growth grammars – a parallel graph transformation approach with applications in biology and architecture. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 152–167. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89020-1_12
Kreowski, H., Kuske, S.: Graph multiset transformation: a new framework for massively parallel computation inspired by DNA computing. Nat. Comput. 10(2), 961–986 (2011)
Kreowski, H.-J., Kuske, S., Lye, A.: A simple notion of parallel graph transformation and its perspectives. In: Heckel, R., Taentzer, G. (eds.) Graph Transformation, Specifications, and Nets. LNCS, vol. 10800, pp. 61–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75396-6_4
Löwe, M.: Characterisation of parallel independence in AGREE-rewriting. In: Lambers, L., Weber, J. (eds.) ICGT 2018. LNCS, vol. 10887, pp. 118–133. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92991-0_8
Plasmeijer, R., Eekelen, M.V.: Functional Programming and Parallel Graph Rewriting, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1993)
Taentzer, G.: Parallel high-level replacement systems. TCS Theor. Comput. Sci. 186, 43–81 (1997)
Wolfram, S.: A New Kind of Science. Wolfram-Media, Champaign (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
de la Tour, T.B., Echahed, R. (2020). Combining Parallel Graph Rewriting and Quotient Graphs. In: Escobar, S., MartÃ-Oliet, N. (eds) Rewriting Logic and Its Applications. WRLA 2020. Lecture Notes in Computer Science(), vol 12328. Springer, Cham. https://doi.org/10.1007/978-3-030-63595-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-63595-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63594-7
Online ISBN: 978-3-030-63595-4
eBook Packages: Computer ScienceComputer Science (R0)