Skip to main content

Combining Parallel Graph Rewriting and Quotient Graphs

  • Conference paper
  • First Online:
Rewriting Logic and Its Applications (WRLA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12328))

Included in the following conference series:

  • 189 Accesses

Abstract

We define two graph transformations, one by parallelizing graph rewrite rules, the other by taking quotients of graphs. The former consists in the exhaustive application of local transformations defined by graph rewrite rules expressed in a set-theoretic framework. Compared with other approaches to parallel rewriting, we allow a substantial amount of overlapping only restricted by a condition called the effective deletion property. This transformation can be reduced by factoring out possibly many equivalent matchings by the automorphism groups of the rules. The second transformation is based on the use of equivalence relations over graph items and offers a new way of performing simultaneous merging operations. The relevance of combining the two transformations is illustrated on a running example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrew, R.B., Sherman, A.H., Weiser, A.: Some refinement algorithms and data structures for regular local mesh refinement (1983)

    Google Scholar 

  2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  3. Baldan, P., Gadducci, F., Montanari, U.: Concurrent rewriting for graphs with equivalences. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 279–294. Springer, Heidelberg (2006). https://doi.org/10.1007/11817949_19

    Chapter  Google Scholar 

  4. Boronat, A., Heckel, R., Meseguer, J.: Rewriting logic semantics and verification of model transformations. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 18–33. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00593-0_2

    Chapter  Google Scholar 

  5. Boy de la Tour, T., Echahed, R.: A set-theoretic framework for parallel graph rewriting. CoRR (abs/1808.03161) (2018)

    Google Scholar 

  6. Boy de la Tour, T., Echahed, R.: True parallel graph transformations: an algebraic approach based on weak spans. CoRR (abs/1904.08850) (2019)

    Google Scholar 

  7. Brenas, J.H., Echahed, R., Strecker, M.: Verifying graph transformation systems with description logics. In: Lambers, L., Weber, J. (eds.) ICGT 2018. LNCS, vol. 10887, pp. 155–170. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92991-0_10

    Chapter  MATH  Google Scholar 

  8. Corradini, A., Duval, D., Echahed, R., Prost, F., Ribeiro, L.: AGREE – algebraic graph rewriting with controlled embedding. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 35–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21145-9_3

    Chapter  MATH  Google Scholar 

  9. Corradini, A., et al.: On the essence of parallel independence for the double-pushout and sesqui-pushout approaches. In: Heckel, R., Taentzer, G. (eds.) Graph Transformation, Specifications, and Nets. LNCS, vol. 10800, pp. 1–18. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75396-6_1

    Chapter  Google Scholar 

  10. Echahed, R., Janodet, J.-C.: Parallel admissible graph rewriting. In: Fiadeiro, J.L. (ed.) WADT 1998. LNCS, vol. 1589, pp. 122–138. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48483-3_9

    Chapter  Google Scholar 

  11. Echahed, R., Maignan, A.: Parallel graph rewriting with overlapping rules. CoRR (abs/1701.06790) (2017)

    Google Scholar 

  12. Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformations, Volume 3: Concurrency, Parallelism and Distribution. World Scientific, Singapore (1999)

    Google Scholar 

  13. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

    Book  MATH  Google Scholar 

  14. Ehrig, H., Kreowski, H.-J.: Parallelism of manipulations in multidimensional information structures. In: Mazurkiewicz, A. (ed.) MFCS 1976. LNCS, vol. 45, pp. 284–293. Springer, Heidelberg (1976). https://doi.org/10.1007/3-540-07854-1_188

    Chapter  Google Scholar 

  15. Engelfriet, J., Rozenberg, G.: Node replacement graph grammars. In: Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1: Foundations, pp. 1–94 (1997)

    Google Scholar 

  16. Software Technology Research Group: The Clean Home Page. Radboud University, Nijmegen

    Google Scholar 

  17. Culik II, K., Lindenmayer, A.: Parallel graph generating and recurrence systems for multicellular development. Int. J. Gen. Syst. 3(1), 53–66 (1976). https://doi.org/10.1080/03081077608934737

    Article  MathSciNet  MATH  Google Scholar 

  18. Janssens, D., Rozenberg, G., Verraedt, R.: On sequential and parallel node-rewriting graph grammars. Comput. Graph. Image Process. 18(3), 279–304 (1982). https://doi.org/10.1016/0146-664X(82)90036-3

    Article  MATH  Google Scholar 

  19. Kniemeyer, O., Barczik, G., Hemmerling, R., Kurth, W.: Relational growth grammars – a parallel graph transformation approach with applications in biology and architecture. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 152–167. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89020-1_12

    Chapter  Google Scholar 

  20. Kreowski, H., Kuske, S.: Graph multiset transformation: a new framework for massively parallel computation inspired by DNA computing. Nat. Comput. 10(2), 961–986 (2011)

    Article  MathSciNet  Google Scholar 

  21. Kreowski, H.-J., Kuske, S., Lye, A.: A simple notion of parallel graph transformation and its perspectives. In: Heckel, R., Taentzer, G. (eds.) Graph Transformation, Specifications, and Nets. LNCS, vol. 10800, pp. 61–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75396-6_4

    Chapter  MATH  Google Scholar 

  22. Löwe, M.: Characterisation of parallel independence in AGREE-rewriting. In: Lambers, L., Weber, J. (eds.) ICGT 2018. LNCS, vol. 10887, pp. 118–133. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92991-0_8

    Chapter  Google Scholar 

  23. Plasmeijer, R., Eekelen, M.V.: Functional Programming and Parallel Graph Rewriting, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1993)

    MATH  Google Scholar 

  24. Taentzer, G.: Parallel high-level replacement systems. TCS Theor. Comput. Sci. 186, 43–81 (1997)

    Article  MathSciNet  Google Scholar 

  25. Wolfram, S.: A New Kind of Science. Wolfram-Media, Champaign (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Boy de la Tour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de la Tour, T.B., Echahed, R. (2020). Combining Parallel Graph Rewriting and Quotient Graphs. In: Escobar, S., Martí-Oliet, N. (eds) Rewriting Logic and Its Applications. WRLA 2020. Lecture Notes in Computer Science(), vol 12328. Springer, Cham. https://doi.org/10.1007/978-3-030-63595-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63595-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63594-7

  • Online ISBN: 978-3-030-63595-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics