Abstract
In this paper we review several parameter-based scalarisation approaches used within Multi-Objective Optimisation. We propose then a proof-of-concept for a new memetic algorithm designed to solve the Constrained Multi-Objective Optimisation Problem. The algorithm is finally tested on a benchmark with a series of difficulties.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Benson, H.P.: Existence of efficient solutions for vector maximization problems. J. Optim. Theory Appl. 26(4), 569–580 (1978). https://doi.org/10.1007/BF00933152
Benson, H.P.: An improved definition of proper efficiency for vector maximization with respect to cones. J. Math. Anal. Appl. 71(1), 232–241 (1979). https://doi.org/10.1016/0022-247X(79)90226-9
Bowman V.J.: On the relationship of the Tchebycheff norm and the efficient frontier of multiple-criteria objectives. In: Thiriez, H., Zionts, S. (eds) Multiple Criteria Decision Making. Lecture Notes in Economics and Mathematical Systems (Operations Research), vol. 130, pp. 76–86. Springer, Heidelberg (1976). https://doi.org/10.1007/978-3-642-87563-2_5
Boţ, R.I., Grad, S.M., Wanka, G.: A general approach for studying duality in multiobjective optimization. Math. Methods Oper. Res. 65(3), 417–444 (2007). https://doi.org/10.1007/s00186-006-0125-x
Burachik, R.S., Kaya, C.Y., Rizvi, M.M.: A new scalarization technique to approximate pareto fronts of problems with disconnected feasible sets. J. Optim. Theory Appl. 162(2), 428–446 (2013). https://doi.org/10.1007/s10957-013-0346-0
Burke, E.K., Graham, K.: Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. Springer, Heidelberg (2014). https://doi.org/10.1007/978-1-4614-6940-7
Deb, K.: Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evol. Comput. 7(3), 205–230 (1998). https://doi.org/10.1162/evco.1999.7.3.205
Deb, K.: Multi-objective optimisation using evolutionary algorithms: an introduction. In: Wang, L., Ng, A., Deb ,K. (eds) Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, pp. 1–24. Springer, London (2011). https://doi.org/10.1007/978-0-85729-652-8_1
Deb, K., Pratap, A., Meyarivan, T.: Constrained test problems for multi-objective evolutionary optimization. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds) Evolutionary Multi-Criterion Optimization. EMO 2001. Lecture Notes in Computer Science, vol. 1993, pp. 284–298 (2001). https://doi.org/10.1007/3-540-44719-9_20
Di Carlo, M., Vasile, M., Minisci, E.: Adaptive multi-population inflationary differential evolution. Soft Comput. 24(5), 3861–3891 (2019). https://doi.org/10.1007/s00500-019-04154-5
Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing (Natural Computing Series). Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-44974-8. www.springer.com/series/
Eichfelder, G.: Scalarizations for adaptively solving multi-objective optimization problems. Comput. Optim. Appl. 44(2), 249–273 (2009). https://doi.org/10.1007/s10589-007-9155-4
Emmerich, M.T., Deutz, A.H.: A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Nat. Comput. 17(3), 585–609 (2018). https://doi.org/10.1007/s11047-018-9685-y
Epstein, J.M.: Why model? J. Artif. Soc. Soc. Simul. 11(4), 12 (2008). http://jasss.soc.surrey.ac.uk/11/4/12.html
Gasimov, R.N.: Characterization of the Benson proper efficiency and scalarization in nonconvex vector optimization. In: Koksalan, M., Zionts, S. (eds) Multiple Criteria Decision Making in the New Millennium. Lecture Notes in Economics and Mathematical Systems, vol. 507, pp. 189–198. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-642-56680-6_17
Gass, S., Saaty, T.: The computational algorithm for the parametric objective function. Naval Res. Logist. Q. 2(1–2), 39–45 (1955). https://doi.org/10.1002/nav.3800020106
Gunantara, N.: A review of multi-objective optimization: methods and its applications. Cogent Eng. 5(1), 1–16 (2018). https://doi.org/10.1080/23311916.2018.1502242
Haimes, Y.Y., Lasdon, L.S., Wismer, D.A.: On a bicriterion formation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. SMC–1(3), 296–297 (1971). https://doi.org/10.1109/TSMC.1971.4308298
Kasimbeyli, R., Ozturk, Z.K., Kasimbeyli, N., Yalcin, G.D., Erdem, B.I.: Comparison of some scalarization methods in multiobjective optimization: comparison of scalarization methods. Bull. Malays. Math. Sci. Soc. 42(5), 1875–1905 (2019). https://doi.org/10.1007/s40840-017-0579-4
Levins, R.: Strategies of abstraction. Biol. Philos. 21(5), 741–755 (2006). https://doi.org/10.1007/s10539-006-9052-8
MATLAB: 9.7.0.1216025 (R2019b). The MathWorks Inc., Natick, Massachusetts (2018)
Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers Group, Dordrecht (2012)
Smith, A.E., Coit, D.W.: Penalty functions. In: Baeck, T., Fogel, D., Michalewicz, Z. (eds.) Handbook of Evolutionary Computation, Chap. 5.2. Oxford University Press, Institute of Physics Publishing (1995). https://doi.org/10.1887/0750308958/b386c48
Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997). https://doi.org/10.1023/A:1008202821328
Wymore, A.W.: Model-Based Systems Engineering. CRC Press, Boca Raton (1993)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000). https://doi.org/10.1162/106365600568202
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Filippi, G., Vasile, M. (2020). Inflationary Differential Evolution for Constrained Multi-objective Optimisation Problems. In: Filipič, B., Minisci, E., Vasile, M. (eds) Bioinspired Optimization Methods and Their Applications. BIOMA 2020. Lecture Notes in Computer Science(), vol 12438. Springer, Cham. https://doi.org/10.1007/978-3-030-63710-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-63710-1_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63709-5
Online ISBN: 978-3-030-63710-1
eBook Packages: Computer ScienceComputer Science (R0)