Skip to main content

Inflationary Differential Evolution for Constrained Multi-objective Optimisation Problems

  • Conference paper
  • First Online:
Bioinspired Optimization Methods and Their Applications (BIOMA 2020)

Abstract

In this paper we review several parameter-based scalarisation approaches used within Multi-Objective Optimisation. We propose then a proof-of-concept for a new memetic algorithm designed to solve the Constrained Multi-Objective Optimisation Problem. The algorithm is finally tested on a benchmark with a series of difficulties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benson, H.P.: Existence of efficient solutions for vector maximization problems. J. Optim. Theory Appl. 26(4), 569–580 (1978). https://doi.org/10.1007/BF00933152

    Article  MathSciNet  MATH  Google Scholar 

  2. Benson, H.P.: An improved definition of proper efficiency for vector maximization with respect to cones. J. Math. Anal. Appl. 71(1), 232–241 (1979). https://doi.org/10.1016/0022-247X(79)90226-9

    Article  MathSciNet  MATH  Google Scholar 

  3. Bowman V.J.: On the relationship of the Tchebycheff norm and the efficient frontier of multiple-criteria objectives. In: Thiriez, H., Zionts, S. (eds) Multiple Criteria Decision Making. Lecture Notes in Economics and Mathematical Systems (Operations Research), vol. 130, pp. 76–86. Springer, Heidelberg (1976). https://doi.org/10.1007/978-3-642-87563-2_5

  4. Boţ, R.I., Grad, S.M., Wanka, G.: A general approach for studying duality in multiobjective optimization. Math. Methods Oper. Res. 65(3), 417–444 (2007). https://doi.org/10.1007/s00186-006-0125-x

    Article  MathSciNet  MATH  Google Scholar 

  5. Burachik, R.S., Kaya, C.Y., Rizvi, M.M.: A new scalarization technique to approximate pareto fronts of problems with disconnected feasible sets. J. Optim. Theory Appl. 162(2), 428–446 (2013). https://doi.org/10.1007/s10957-013-0346-0

    Article  MathSciNet  MATH  Google Scholar 

  6. Burke, E.K., Graham, K.: Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. Springer, Heidelberg (2014). https://doi.org/10.1007/978-1-4614-6940-7

    Book  MATH  Google Scholar 

  7. Deb, K.: Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evol. Comput. 7(3), 205–230 (1998). https://doi.org/10.1162/evco.1999.7.3.205

    Article  Google Scholar 

  8. Deb, K.: Multi-objective optimisation using evolutionary algorithms: an introduction. In: Wang, L., Ng, A., Deb ,K. (eds) Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, pp. 1–24. Springer, London (2011). https://doi.org/10.1007/978-0-85729-652-8_1

  9. Deb, K., Pratap, A., Meyarivan, T.: Constrained test problems for multi-objective evolutionary optimization. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds) Evolutionary Multi-Criterion Optimization. EMO 2001. Lecture Notes in Computer Science, vol. 1993, pp. 284–298 (2001). https://doi.org/10.1007/3-540-44719-9_20

  10. Di Carlo, M., Vasile, M., Minisci, E.: Adaptive multi-population inflationary differential evolution. Soft Comput. 24(5), 3861–3891 (2019). https://doi.org/10.1007/s00500-019-04154-5

    Article  Google Scholar 

  11. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing (Natural Computing Series). Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-44974-8. www.springer.com/series/

    Book  MATH  Google Scholar 

  12. Eichfelder, G.: Scalarizations for adaptively solving multi-objective optimization problems. Comput. Optim. Appl. 44(2), 249–273 (2009). https://doi.org/10.1007/s10589-007-9155-4

    Article  MathSciNet  MATH  Google Scholar 

  13. Emmerich, M.T., Deutz, A.H.: A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Nat. Comput. 17(3), 585–609 (2018). https://doi.org/10.1007/s11047-018-9685-y

    Article  MathSciNet  Google Scholar 

  14. Epstein, J.M.: Why model? J. Artif. Soc. Soc. Simul. 11(4), 12 (2008). http://jasss.soc.surrey.ac.uk/11/4/12.html

    Google Scholar 

  15. Gasimov, R.N.: Characterization of the Benson proper efficiency and scalarization in nonconvex vector optimization. In: Koksalan, M., Zionts, S. (eds) Multiple Criteria Decision Making in the New Millennium. Lecture Notes in Economics and Mathematical Systems, vol. 507, pp. 189–198. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-642-56680-6_17

  16. Gass, S., Saaty, T.: The computational algorithm for the parametric objective function. Naval Res. Logist. Q. 2(1–2), 39–45 (1955). https://doi.org/10.1002/nav.3800020106

    Article  MathSciNet  Google Scholar 

  17. Gunantara, N.: A review of multi-objective optimization: methods and its applications. Cogent Eng. 5(1), 1–16 (2018). https://doi.org/10.1080/23311916.2018.1502242

    Article  Google Scholar 

  18. Haimes, Y.Y., Lasdon, L.S., Wismer, D.A.: On a bicriterion formation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. SMC–1(3), 296–297 (1971). https://doi.org/10.1109/TSMC.1971.4308298

    Article  MATH  Google Scholar 

  19. Kasimbeyli, R., Ozturk, Z.K., Kasimbeyli, N., Yalcin, G.D., Erdem, B.I.: Comparison of some scalarization methods in multiobjective optimization: comparison of scalarization methods. Bull. Malays. Math. Sci. Soc. 42(5), 1875–1905 (2019). https://doi.org/10.1007/s40840-017-0579-4

    Article  MathSciNet  MATH  Google Scholar 

  20. Levins, R.: Strategies of abstraction. Biol. Philos. 21(5), 741–755 (2006). https://doi.org/10.1007/s10539-006-9052-8

    Article  Google Scholar 

  21. MATLAB: 9.7.0.1216025 (R2019b). The MathWorks Inc., Natick, Massachusetts (2018)

    Google Scholar 

  22. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers Group, Dordrecht (2012)

    MATH  Google Scholar 

  23. Smith, A.E., Coit, D.W.: Penalty functions. In: Baeck, T., Fogel, D., Michalewicz, Z. (eds.) Handbook of Evolutionary Computation, Chap. 5.2. Oxford University Press, Institute of Physics Publishing (1995). https://doi.org/10.1887/0750308958/b386c48

  24. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  25. Wymore, A.W.: Model-Based Systems Engineering. CRC Press, Boca Raton (1993)

    Google Scholar 

  26. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000). https://doi.org/10.1162/106365600568202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Filippi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Filippi, G., Vasile, M. (2020). Inflationary Differential Evolution for Constrained Multi-objective Optimisation Problems. In: Filipič, B., Minisci, E., Vasile, M. (eds) Bioinspired Optimization Methods and Their Applications. BIOMA 2020. Lecture Notes in Computer Science(), vol 12438. Springer, Cham. https://doi.org/10.1007/978-3-030-63710-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63710-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63709-5

  • Online ISBN: 978-3-030-63710-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics