Abstract
An exploratory study of learning a neural network for categorisation shows that commonly used leaky integrate and fire neurons and Hebbian learning can be effective. The system learns with a standard spike timing dependent plasticity Hebbian learning rule. A two layer feed forward topology is used with a presentation mechanism of inputs followed by outputs a simulated ms. later to learn Iris flower and Breast Cancer Tumour Malignancy categorisers. An exploration of parameters indicates how this may be applied to other tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The code can be found on http://www.cwa.mdx.ac.uk/NEAL/NEAL.html.
References
Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml
Belavkin, R., Huyck, C.: Conflict resolution and learning probability matching in a neural cell-assembly architecture. Cogn. Syst. Res. 12, 93–101 (2010)
Bi, G., Poo, M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24), 10464–10472 (1998)
Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005)
Davison, A., Yger, P., Kremkow, J., Perrinet, L., Muller, E.: PyNN: towards a universal neural simulator API in python. BMC Neurosci. 8(S2), P2 (2007)
Gewaltig, M., Diesmann, M.: NEST (NEural Simulation Tool). Scholarpedia 2(4), 1430 (2007)
Hebb, D.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)
Hinton, G., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)
Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)
Huyck, C.R., Mitchell, I.G.: Post and pre-compensatory Hebbian learning for categorisation. Cogn. Neurodyn. 8(4), 299–311 (2014). https://doi.org/10.1007/s11571-014-9282-4
Rumelhart, D., McClelland, J.: Parallel Distributed Processing. MIT Press, Cambridge (1986)
Sejnowski, T., Koch, C., Churchland, P.: Computataional neuroscience. Science 241(4871), 1299–1306 (1988)
Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550, 354–59 (2017)
Song, S., Miller, K., Abbott, L.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3(9), 919–926 (2000)
Sun, Y., Liang, D., Wang, X., Tang, X.: DeepID3: face recognition with very deep neural networks. CoRR abs/1502.00873 (2015)
Wade, J., McDaid, L., Santos, J., Sayers, H.: SWAT: a spiking neural network training algorithm for classification problems. IEEE Trans. Neural Netw. 21(11), 1817–1830 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Huyck, C. (2020). Learning Categories with Spiking Nets and Spike Timing Dependent Plasticity. In: Bramer, M., Ellis, R. (eds) Artificial Intelligence XXXVII. SGAI 2020. Lecture Notes in Computer Science(), vol 12498. Springer, Cham. https://doi.org/10.1007/978-3-030-63799-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-63799-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63798-9
Online ISBN: 978-3-030-63799-6
eBook Packages: Computer ScienceComputer Science (R0)