Skip to main content

Hybrid Loss for Improving Classification Performance with Unbalanced Data

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Abstract

Unbalanced data is widespread in practice and presents challenges which have been widely studied in classical machine learning. A classification algorithm trained with unbalanced data is likely to be biased towards the majority class and thus show inferior performance on the minority class. To improve the performance of deep neural network (DNN) models on poorly balanced data, we hybridized two well-performing loss functions, specially designed for learning imbalanced data, mean false error and focal loss. Since mean false error can effectively balance between majority and minority classes and focal loss can reduce the contribution of unnecessary samples, which are usually samples from the majority class, which may cause a DNN model to be biased towards the majority class when learning. We show that hybridizing the two losses can improve the classification performance of the model. Our hybrid loss function was tested with unbalanced data sets, extracted from CIFAR-100 and IMDB review datasets, and showed that, overall, it performed better than mean false error or focal loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283 (2016)

    Google Scholar 

  2. Anand, R., Mehrotra, K.G., Mohan, C.K., Ranka, S.: An improved algorithm for neural network classification of imbalanced training sets. IEEE Trans. Neural Netw. 4(6), 962–969 (1993)

    Article  Google Scholar 

  3. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)

    Article  Google Scholar 

  4. Chollet, F., et al.: Keras (2015). https://keras.io

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Hensman, P., Masko, D.: The impact of imbalanced training data for convolutional neural networks. Degree Project in Computer Science, KTH Royal Institute of Technology (2015)

    Google Scholar 

  7. Huang, C., Li, Y., Chen, C.L., Tang, X.: Deep imbalanced learning for face recognition and attribute prediction. IEEE Trans. Pattern Anal. Mach. Intell. (2019)

    Google Scholar 

  8. Janowczyk, A., Madabhushi, A.: Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J. Pathol. Inform. 7 (2016)

    Google Scholar 

  9. Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance. J. Big Data 6(1), 1–54 (2019). https://doi.org/10.1186/s40537-019-0192-5

    Article  Google Scholar 

  10. Khan, S.H., Hayat, M., Bennamoun, M., Sohel, F.A., Togneri, R.: Cost-sensitive learning of deep feature representations from imbalanced data. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3573–3587 (2017)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep. (2009)

    Google Scholar 

  13. Kudisthalert, W., Pasupa, K., Tongsima, S.: Counting and classification of malarial parasite from giemsa-stained thin film images. IEEE Access 8, 78663–78682 (2020)

    Article  Google Scholar 

  14. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  15. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2537–2546 (2019)

    Google Scholar 

  16. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150. Association for Computational Linguistics, Portland, Oregon, USA, June 2011. http://www.aclweb.org/anthology/P11-1015

  17. Pasupa, K., Kudisthalert, W.: Virtual screening by a new clustering-based weighted similarity extreme learning machine approach. PLoS ONE 13(4), e0195478 (2018)

    Article  Google Scholar 

  18. Pasupa, K., Vatathanavaro, S., Tungjitnob, S.: Convolutional neural networks based focal loss for class imbalance problem: a case study of canine red blood cells morphology classification. arXiv preprint arXiv:2001.03329 (2020)

  19. Sammut, C., Webb, G.I.: Encyclopedia of Machine Learning. Springer Science & Business Media, Berlin (2011)

    MATH  Google Scholar 

  20. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  21. Wang, H., Cui, Z., Chen, Y., Avidan, M., Abdallah, A.B., Kronzer, A.: Predicting hospital readmission via cost-sensitive deep learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 15(6), 1968–1978 (2018)

    Article  Google Scholar 

  22. Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., Kennedy, P.J.: Training deep neural networks on imbalanced data sets. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 4368–4374. IEEE (2016)

    Google Scholar 

  23. Zhu, X., Jing, X.Y., Zhang, F., Zhang, X., You, X., Cui, X.: Distance learning by mining hard and easy negative samples for person re-identification. Pattern Recogn. 95, 211–222 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kitsuchart Pasupa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lodkaew, T., Pasupa, K. (2020). Hybrid Loss for Improving Classification Performance with Unbalanced Data. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_92

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63820-7_92

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63819-1

  • Online ISBN: 978-3-030-63820-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics