Skip to main content

Deep Denoising Subspace Single-Cell Clustering

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1333))

Included in the following conference series:

Abstract

The development of second-generation sequencing technology has brought a great breakthrough to the study of biology. Clustering transcriptomes profiled by single-cell Ribonucleic Acid sequencing (scRNA-seq) has been routinely conducted to reveal cell heterogeneity and diversity. However, clustering analysis of scRNA-seq data remains a statistical and computational challenge, due to the pervasive drop-out events obscuring the data matrix with prevailing “false” zero count observations. In this paper, we propose a novel clustering technique named Deep Denoising Subspace Single-cell Clustering (DDS2C) to improve the clustering performance of scRNA-seq data, by utilizing autoencoder and data self-expressiveness structures. The DDS2C incorporates the loss functions of network structures and data denoising in a unified manner. The validity of DDS2C is examined over benchmark datasets from four representative single-cell sequencing platforms. The experimental results demonstrate that DDS2C outperforms than some state-of-the-art scRNA-seq clustering methods in terms of accuracy efficiency and scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Picelli, S., Faridani, O.R., Björklund, Å.K., Winberg, G., Sagasser, S., Sandberg, R.: Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014)

    Article  Google Scholar 

  2. Chen, X., Teichmann, S.A., Meyer, K.B.: From tissues to cell types and back: single-cell gene expression analysis of tissue architecture. Ann. Rev. Biomed. Data Sci. 1, 29–51 (2018)

    Article  Google Scholar 

  3. Shapiro, E., Biezuner, T., Linnarsson, S.: Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14, 618–630 (2013)

    Article  Google Scholar 

  4. Bellman, R.E.: Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton (2015)

    Google Scholar 

  5. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2, 37–52 (1987)

    Article  Google Scholar 

  6. Lin, C., Jain, S., Kim, H., Bar-Joseph, Z.: Using neural networks for reducing the dimensions of single-cell RNA-Seq data. Nucleic Acids Res. 45, e156–e156 (2017)

    Article  Google Scholar 

  7. Pierson, E., Yau, C.: ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 16, 241 (2015)

    Article  Google Scholar 

  8. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4, 251–257 (1991)

    Article  Google Scholar 

  9. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)

    Article  Google Scholar 

  10. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning, pp. 478–487. International Machine Learning Society, New York (2016)

    Google Scholar 

  11. Klein, A.M., et al.: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015)

    Article  Google Scholar 

  12. Han, X., et al.: Mapping the mouse cell atlas by microwell-Seq. Cell 172, 1091–1107 (2018)

    Article  Google Scholar 

  13. Angerer, P., Simon, L., Tritschler, S., Wolf, F.A., Fischer, D., Theis, F.J.: Single cells make big data: new challenges and opportunities in transcriptomics. Curr. Opinion Syst. Biol. 4, 85–91 (2017)

    Article  Google Scholar 

  14. Wolf, F.A., Angerer, P., Theis, F.J.: SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018)

    Article  Google Scholar 

  15. Kingma, D.P., Welling, M.: Stochastic gradient VB and the variational auto-encoder. In: Second International Conference on Learning Representations, ICLR (2014)

    Google Scholar 

  16. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2765–2781 (2013)

    Article  Google Scholar 

  17. Ji, P., Zhang, T., Li, H., Salzmann, M., Reid, I.: Deep subspace clustering networks. In: Advances in Neural Information Processing Systems, pp. 24–33. Long Beach (2017)

    Google Scholar 

  18. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Eraslan, G., Simon, L.M., Mircea, M., Mueller, N.S., Theis, F.J.: Single-cell RNA-seq denoising using a deep count autoencoder. Nat. Commun. 10, 1–14 (2019)

    Article  Google Scholar 

  20. Cao, J., et al.: Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661–667 (2017)

    Article  Google Scholar 

  21. Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985)

    Article  Google Scholar 

  23. Wang, B., Zhu, J., Pierson, E., Ramazzotti, D., Batzoglou, S.: Visualization and analysis of single-cell RNA-Seq data by kernel-based similarity learning. Nat. Methods 14, 414–416 (2017)

    Article  Google Scholar 

  24. Lin, P., Troup, M., Ho, J.W.K.: CIDR: ultrafast and accurate clustering through imputation for single-cell RNA-Seq data. Genome Biol. 18, 59 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by National Natural Science Foundation of China (NSFC) Grant (61806159); China Postdoctoral Science Foundation Grant (2018M631192) and Xi’an Municipal Science and Technology Program (2020KJRC0027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Yang, B. (2020). Deep Denoising Subspace Single-Cell Clustering. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1333. Springer, Cham. https://doi.org/10.1007/978-3-030-63823-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63823-8_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63822-1

  • Online ISBN: 978-3-030-63823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics