Skip to main content

Fractional Backpropagation Algorithm – Convergence for the Fluent Shapes of the Neuron Transfer Function

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1333))

Included in the following conference series:

Abstract

The classic algorithm of backpropagation of errors requires that the neural transfer function is differentiable and usually the algebraic form of this derivative determines the implementation of the algorithm minimizing the SSE error function. The paper extends the idea of homogeneous ANNs of the feed-forward type, which can be designed with the use of calculus of finite differences. We present a novel model of a neural network which uses a fractional order derivative mechanism. It has been shown that by using numerical approximation of a fractional order derivative, it is possible to smoothly model the dynamics of the transfer function of a single neuron without the need to modify the algebraic form of its base functions like sigmoid. This approach universalizes the neural network model, and enhance the area of possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bao, C., Pu, Y., Zhang, Y.: Fractional-order deep backpropagation neural network. Comput. Intell. Neurosci. (2018)

    Google Scholar 

  2. Garrappa, R.: Numerical evaluation of two and three parameter Mittag-Leffler functions. SIAM J. Numer. Anal. 53, 1350–1369 (2015)

    Article  MathSciNet  Google Scholar 

  3. Ghosh, U., Sarkar, S., Das, S.: Solution of system of linear fractional differential equations with modified derivative of Jumarie type. Am. J. Math. Anal. 3(3), 72–84 (2015)

    Google Scholar 

  4. Giusti, A.: A comment on some new definitions of fractional derivative. Nonlinear Dyn. 93(3), 1757–1763 (2018). https://doi.org/10.1007/s11071-018-4289-8

    Article  MATH  Google Scholar 

  5. Gomolka, Z., Dudek-Dyduch, E., Kondratenko, Y.P.: From homogeneous network to neural nets with fractional derivative mechanism. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 52–63. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_5

    Chapter  Google Scholar 

  6. Gomolka, Z.: Neurons’transfer function modeling with the use of fractional derivative. In: DepCoS-RELCOMEX 2018, AISC, vol. 761. Springer (2019). https://doi.org/10.1007/978-3-319-91446-6_21

  7. Moret, I.: Shift-and-invert Krylov methods for time-fractional wave equations. Numer. Func. Anal. Optim. 36(1), 86–103 (2015)

    Article  MathSciNet  Google Scholar 

  8. Tarasov, V.: No nonlocality. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 62, 157–163 (2018)

    Article  MathSciNet  Google Scholar 

  9. Wang, J., Wen, Y., Gou, Y., Ye, Z., Chen, H.: Fractional-order gradient descent learning of BP neural networks with Caputo derivative. Neural Networks, 89, 19–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Gomolka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gomolka, Z. (2020). Fractional Backpropagation Algorithm – Convergence for the Fluent Shapes of the Neuron Transfer Function. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1333. Springer, Cham. https://doi.org/10.1007/978-3-030-63823-8_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63823-8_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63822-1

  • Online ISBN: 978-3-030-63823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics