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Abstract. Monitoring abnormal energy consumption is helpful for
demand-side management. This paper proposes a framework for contex-
tual anomaly detection (CAD) for residential energy consumption. This
framework uses a sliding window approach and prediction-based detec-
tion method, along with the use of a concept drift method to identify the
unusual energy consumption in different contextual environments. The
anomalies are determined by a statistical method with a given thresh-
old value. The paper evaluates the framework comprehensively using a
real-world data set, compares with other methods and demonstrates the
effectiveness and superiority.

Keywords: Contextual · Anomaly detection · Data stream · Concept
drift

1 Introduction

According to the EU energy in figures [3], households account for 27% of total
energy consumption and 16% carbon emissions. Several studies [8,10,11] have
shown that thermal renovation often does not deliver the expected energy sav-
ings. This is because household energy consumption is largely dependent on
household characteristics and occupant behaviour. Therefore, an effective app-
roach is to monitor user energy consumption, in particular, to detect and diag-
nose abnormal consumption. This now become possible with the use of smart
meters. By analysing smart meter data, utilities can then provide personalised
services and energy-efficiency suggestions.

Anomaly detection refers to the process of identifying unusual observations
that do not meet expectations, also known as outlier detection [7]. Contextual
factors often play an important role in influencing energy consumption, which
must be taken into account when detecting anomalies. We call it contextual
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H. Yang et al. (Eds.): ICONIP 2020, CCIS 1333, pp. 733–742, 2020.
https://doi.org/10.1007/978-3-030-63823-8_83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63823-8_83&domain=pdf
https://doi.org/10.1007/978-3-030-63823-8_83


734 X. Liu et al.

anomaly detection in this paper. For example, the increase in electricity con-
sumption in summer may not need to be considered as anomalies if we consider
the effects of weather temperature. This is because people usually use more
energy in summer due to air conditioning for cooling. However, if the temper-
ature is mild and no air conditioning is used, the high consumption should be
detected as an anomaly. This is also true in other contexts, such as changes in
consumption patterns, thermal renovation of buildings or changes in occupants,
which may cause the general consumption pattern shifts. Therefore, contextual
anomaly detection consists of identifying individual observations or patterns
that differ from the masses in the same context. In this paper, the consumption
trend or pattern changes due to variations in the contextual environment are
considered as concept drift, which means that the overall pattern or trend may
change abruptly or gradually. The anomalies will be detected accordingly in each
context.

Depending on how the streaming data are processed, the methods can be
divided into batch and stream data anomaly detection. This paper focuses on
the latter. Compared to the detection of anomalies in batch data, the detection of
anomalies in data streams consists of additional challenges due to their complex
nature and data stream evolving. These challenges include high velocity, the
presence of noisy data, and concept drift. The model trained on static data
may not be suitable for detection on a data stream because the time series
may drift, e.g., the data distribution changes. Therefore, the detection models
should be retrained if a concept drift occurs. To remedy this, our earlier work
[7] updates the detection models iteratively using a lambda system and uses
the latest model to detect anomalies of a data stream. This approach runs in
a cluster environment and requires a large amount of computing capacity. It is
therefore not an ideal solution for stream data mining in an environment with
limited computing resources such as IoT devices.

In this paper, we implement a contextual anomaly detection framework,
called CAD. It integrates with a concept drift detector to identify each context
and trains the detection model when a concept drift occurs. It can be integrated
into a building energy management system or a building information manage-
ment platform (BIM) to enable automation of energy performance monitoring or
design of building energy systems. This paper makes the following contributions:
(1) We propose an algorithm of detecting contextual anomalies for high-frequent
energy consumption data streams; (2) We propose an unsupervised concept drift
detection method for contextual detection; (3) We evaluate the proposed frame-
work comprehensively, and compare with other approaches using a real-world
energy consumption data set.

2 The Framework

The proposed framework for contextual anomaly detection is presented in Fig. 1.
This framework detects anomalies on the streaming data from smart meters.
First, it uses online concept drift detection to identify different contexts rep-
resenting the change of energy consumption environment. The reason is that
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context-dependent factors are often difficult to determine. Then, the framework
uses an algorithm to predict short-term energy consumption values. In the end,
the predicted value is compared with the actual value by calculating the distance
which is used to determine an anomaly or not according to a given threshold
value. The anomaly can be used for notification purposes or control signal in
smart energy systems.

Figure 2 shows an illustrating example using synthetic data to explain when
and how an anomaly is detected. In this time series, two concept drifts are
first identified, and the prediction model is retrained when a concept drift is
determined. Thus, the concept drifts are used to identify the context shifts and
the consumption values are predicted using the retrained model in each context
(see the red line). Anomaly scores are calculated based on prediction errors, and
those with anomaly scores above a threshold value are classified as anomalies.
The concept drift detection, short-term prediction, and anomaly classifier are
described in greater detail in the following.

2.1 Context Shift Detection

The concept drift detection can be formalised as follows. For a data stream,
D = {(X1, y1), (X2, y2), . . . , (Xt, yt), . . .}, where X is the vector of features and
y is the class, the concept drift can be defined as the distribution shift detection,
i.e., p(Xt, yt) �= p(Xt−1, yt−1), where p represents the probability of concept
drift. The entire data stream is divided into the segments in which the drifts
of the underlying distributions are detected accordingly. We perform the model
update only when a drift is detected. The algorithm is called CAD-D3, derived
from the Discriminative Drift Detector (D3) [5] (see Algorithm 1). It detects a
drift by comparing the divergence of data statistics between two segments in a
time window.

Figure 3 shows the architecture. A fixed-length time window, W , slides on
a time series with two segments partitioned by a ratio of p, w and pw, used
to hold old and new data respectively. The separability of the two segments is
determined by an AUC value ranging from 0.5 to 1. 1 means that the two classes
can be perfectly separated and 0.5 means that they overlap completely. With
a given threshold τ , if the AUC value is greater than or equal to τ , the old
data will be dropped and the new data will be moved into it (the lower left);
otherwise, the pw elements at the tail of the sliding window will be dropped
and the remaining data in the sliding window will be shifted to the left (see
Algorithm 1 for details). Therefore, this method can identify different contexts
of energy consumption.
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Fig. 1. Architecture overview Fig. 2. Contextual anomaly detection
overview (Color figure online)

Fig. 3. Concept drift detection architecture of CAD-D3

2.2 Consumption Prediction

We now present how to predict short-term energy consumption. The energy
consumption pattern of residential households typically has a periodicity char-
acteristics, e.g., with low consumption during the night and high consumption
during the day with morning and evening peaks. The yearly pattern has a sea-
sonality (or seasonal periodicity), e.g., with higher consumption in both summer
and winter, due to electrical cooling and heating. The fluctuations with a long
range of time are considered as contextual shifts in this paper, e.g., weather
temperature changes. We choose the LSTM (Long Short-Term Memory) model
which has shown good performance in time series prediction [12]. LSTM is a deep
learning method with numerous hidden layers, which has a gate structure and a
memory cell to manage the temporal correlation of time series. A LSTM model
can be seen as the function F(·) that maps a sequence of past observations to an
output as the predicted value. It is defined as: X ′

t = F(Xt−1,Xt−2, · · · ,Xt−24),
where X ′

t is the predicted value, and Xt−1,Xt−2, · · · ,Xt−24 are the past values,
representing the last 24 h energy consumption that constitute a daily periodicity.

2.3 Aggregated for Contextual Anomaly Detection

We now aggregate the above concept drift detection and the LSTM prediction
model to detect contextual anomalies for energy consumption time series. The
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aggregated model is presented in Algorithm1. The input includes an individual
consumption time series T S, the period d (d = 24 as the default for daily
periodicity), the size of window holding old data w, the window ratio for holding
new data p, and the drift threshold τ . The algorithm is for online concept drift
detection, C and anomaly detection AD, as well as retraining the prediction
model, AP.

This algorithm first divides the elements in the sliding window W into mul-
tiple groups according to the period d (line 16), then extracts the group statis-
tics as the features to train the concept drift detection model, including mean,
standard deviation, and range. The drift discriminative classifier is a logistic
regression model trained by the extracted features (lines 21–22), then a concept
drift is detected (lines 23–24). The group statistical characteristics is used as
the features for training the classifier. The AUC is then used as the measure
to determinate the separability between the old and new data. This is done
by introducing a slack variable s, which labels old data as 1 and new data as
0 (line 19–20). If the AUC is greater than or equal to the user-specified drift
threshold value τ , a concept drift is determined. In the end, the auto-regressive
predictor AP (i.e., the LSTM model) is retrained to predict energy consumption
in the next context after the concept drift (lines 30–31).

The following describes the anomaly classifier AD. For the input Xt at the
time t, the corresponding prediction error errt = |Xt −X ′

t| is calculated (line 8).
The error represents the prediction capability of the generated model. Instead of
directly thresholding the error to identify an anomaly, the error distribution is
used as the indirect metric for calculating anomaly score. At the time t with Nt

data points, the errors are modeled as a rolling normal distribution, N (μt, σ
2
t ),

where:

μt =
∑Nt

i=1 erri

Nt
, σ2

t =
∑Nt

i=1 (erri − μt)
2

Nt
, S(err) = 1 − 1

σt

√
2π

e
− (err−μt)

2

2σ2
t

(1)
If the anomaly score, S, is greater than or equal to a user-defined threshold value,
ε, i.e. S(err) ≥ ε, the corresponding data point is classified as an anomaly.

3 Evaluation

The experiments were conducted on an HP laptop, configured with an Intel(R)
Core(TM) i7-8700 processor (3.20 GHz, 6 Cores), 16 GB RAM, and a Western
Digital Hard driver (1TB, 6 Gb/s, 64 MB Cache and 7200 RPM), running Win-
dows 10 Professional edition. The LSTM network is implemented with Keras
2.3.1 [2].

The Irish Commission for Energy Regulation (CER) data set [6] is used, with
time series of 4,182 households from July 2009 to December 2010, a resolution
of 30 min. We made the following pre-processing: aggregate to an hourly reso-
lution and concatenate multiple time series to obtain a longer time series. The
concatenations of different time series with statistical significance in values can
be seen as a context shift, as well as the changes due to weather temperatures.
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Algorithm 1: Contextual anomaly detection model
1 function CAD(TimeSeries T S, WindowSize w, Period d, NewDataRatio p,

DriftThreshold τ)
2 Initialize window W where |W | = w(1 + p);
3 Discriminative classifier C;
4 Auto-regressive predictor AP;
5 Statistical anomaly detector AD;
6 while T S generates a new sample X do
7 X′ = AP (W [|W | − d, |W |]);
8 err = |X − X′|;
9 if AD(err) alarms then

10 Anomaly = True;
11 else
12 Anomaly = False;
13 end
14 if W is not full then
15 W ← W ∪ X;
16 else
17 G =

{
G1, ..., G|W |/d

}
← Split W into |W |/d groups, each of which Gi has d

elements, i ∈ [1, |W |/d];

18 F =
{

F1, ..., F|W |/d

}
← Calculate mean, standard deviation and range as the

classification feature Fi of Gi;
19 S is vector of s = {0, 1}, |S| = |W |/d, label for old data (0) and new data (1);
20 s = 0 for old data F [1, (w/d)];
21 s = 1 for new data F [(w/d) + 1, |W |/d];
22 (Ftrain, Strain), (Ftest, Stest) ← Split classification feature F into train and

test set with S;
23 Train the discriminative classifier C(Ftrain, Strain) on the train set;
24 AUC(Ftest, Stest) ← Test C(Ftest, Stest) on the test set;
25 if AUC(Ftest, Stest) ≥ τ then
26 Drift = True;
27 Drop w elements from the tail of W ;

28 else
29 Drift = False;
30 Drop wp elements from the tail of W ;

31 end

32 end
33 if Drift is True then
34 Retrain AP model;
35 end

36 end

37 end

The following subsections will first investigate the optimal hyperparameters
for the CAD model, then evaluate the concept drift model and the influence of
the model update frequency on the prediction accuracy, and finally evaluate the
anomaly detection.

3.1 Hyperparameter Investigation for the CAD Model

The hyperparameters include the LSTM units of the time series predictor, the
sliding window size and the AUC threshold of the concept drift detector. The
following studies will be based on the performance evaluated by mean square
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Fig. 4. Impact of sliding window size and AUC threshold on prediction

Table 1. Different LSTM units in
CAD

No. LSTM units RMSE MAE

5 0.963 0.557
10 0.842 0.512
25 0.766 0.471
50 0.792 0.496

Table 2. Concept drift on predic-
tion

Model RMSE MAE

DDM 1.117 0.694
ADWIN 1.101 0.674
D3 0.826 0.558
CAD-D3 0.766 0.471

error (RMSE) and mean absolute error (MAE).

RMSE =

√
√
√
√

N∑

i=1

(X ′
i − Xi)

2

N
, MAE =

∑N
i=1 |X ′

i − Xi|
N

(2)

where X ′ is the predicted value, X is the observation (actual reading) and N is
the number of observations.

We first investigate the optimal number of LSTM units by varying the num-
ber of LSTM units. The corresponding RMSE and MAE values are in Table 1,
which shows that the CAD model performs the best when the number of units
is set to 25.

We next investigate the optimal sliding window size W by varying from 288
(corresponding to the hourly readings of 6 days) to 1,056 (corresponding to the
hourly readings of up to 44 days). The results are shown in Fig. 4a and b, in
which the lines both have a “V” shape, with the lowest value at W = 672
(corresponding to the hourly readings of 28 days). We then investigate the AUC
threshold of the concept drift detector, and use a fixed window size W = 672,
but vary the threshold value from 0.6 to 0.85. The results are shown in Fig. 4c
and d, showing that the AUC threshold of τ = 0.7 has the best result. Therefore,
the window size W = 672 and the concept drift threshold τ = 0.7 are used as
the default parameters.

3.2 Comparison with Other Drift Detection Models

We now compare CAD-D3 with other baselines, including the original D3, and
DDM [1] and ADWIN [4]. The reason for choosing DDM and ADWIN is that
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they are the most commonly used concept drift detection algorithms for data
stream. The results are presented in Table 2, which shows how different concept
drift detectors affect prediction accuracy. D3 and CAD-D3 outperform DDM
and ADWIN according to the RMSE and MAE values, and CAD-D3 performs
slightly better than D3. It is because CAD-D3 improves the D3 by taking into
account the statistical features in its classifier, including mean, standard devia-
tion and range of daily consumption data. This results in greater accuracy, but
also allows more updates to be triggered for predictions.

3.3 Evaluation of Model Update Frequency

In this study, we compare the model without update (static model), the model
with regular updates (regular model) and the model update triggered by con-
cept drift (CAD model). We randomly select a time series for the experiment.
Figure 5a–c show the results of the three models, while Fig. 5d shows the original
time series for better visual comparison. The results show that the static model
predicts electricity consumption with a relatively fixed pattern because it was
trained by the early data and is not able to adapt well to data variations in
different contextual environments. In Fig. 5b, the regular model shows a similar
result to the static model in Fig. 5a. Note that the prediction accuracy is related
to the freshness of the model used. Here we specify the update frequency for
every 4,000 h for the regular model, which does not obtain the same prediction
accuracy as the CAD model. In contrast, the CAD model is more adaptable.
The model is updated according to the contextual environment variation, which
maintains the freshness of the model.

Fig. 5. Prediction by the models with different update frequency

We calculate the corresponding RMSE and MAE values in Table 3. The static
model has the highest RMSE and MAE values, followed by the regular model.
However, we can see that the regular model has improved the RMSE value by
27.3% and the MAE value by 26.9% compared to the static model. In this case,
the CAD model gives the best result, i.e., it can achieve good prediction accuracy
in contextual environments.
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Table 3. Impact by update fre-
quency

Model RMSE MAE

Static model 1.203 0.722
Regular model 0.918 0.528
CAD model 0.766 0.471

Table 4. Comparison between models

Model Precision Recall F1-score

Tukey BP 0.544 0.831 0.564
Static model 0.557 0.671 0.537
Regular model 0.580 0.793 0.585
CAD model 0.584 0.844 0.636

Fig. 6. A showcase of anomaly detection using the CAD model (Color figure online)

3.4 Evaluation of Anomaly Detection

Since there are no ground-truth anomalies, we label the data manually, aided by a
time series visualisation tool and a Python program. Again, we compare the CAD
model with the static model and the regular model. We also introduce Tukey
Boxplot (BP) [9] as an additional baseline to evaluate the proposed framework.

Figure 6 is a showcase of anomaly detection by the CAD model, with detected
anomalies marked with a red star. Note that the ε anomaly detection threshold
is set to 0.6. Table 4 summarises the performance of anomaly detection based on
the metrics including precision, recall and F1 score. According to the F1 score,
the static model has the lowest accuracy in anomaly detection. It is noteworthy
that there is a big difference between the static model and the other models
in terms of recall value. The accuracy of the regular model is better than the
static model, but its recall value is lower than the Tukey BP. The CAD model
outperforms others in all metrics, which means that our model outperforms
others in detecting contextual anomalies. The others, like the static model, have
not taken into account contextual shifts because their models are fixed, which
makes it less accurate. Although the regular model performs better than the
static model, blind updates may not help to obtain better accuracy because a
concept drift can occur exactly after the model is updated. Because Tukey BP
analyses the overall statistical characteristics without considering the periodicity
and drift of the data, its performance is not superior. In contrast, the contextual
CAD model is well suited for detecting anomalies for time series with periodicity
and drifts, such as energy consumption data, as it can maintain model freshness.
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4 Conclusions and Future Work

This paper proposed a framework for online contextual anomaly detection for the
data stream from smart meters. Concept drift was used to signal the refreshing of
the prediction model. In this paper, the errors between the actual and predicted
values were modeled into a rolling normal distribution and used to calculate
the score for identifying anomalies. We have conducted extensive experiments
to evaluate the framework, and the results verified the superiority of the pro-
posed CAD model over other baselines, being better able to adapt to changes in
contextual conditions and environment, but also offering the best performance.
For future work, we plan to support the detection of different types of anomalies
such as energy theft and leakage.
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