Abstract
Dreams have been responsible for some major creative and scientific discoveries in the course of human history. Recording dreams in the form of images is an interesting and meaningful thing. Our task is to generate images based on the description of dreams. Recently, there has been exciting progress in generating images from descriptions of birds and flowers, but the dream scene is more fantasy than the real scene. The challenge to reproduce complex sentences with many objects and relationships remain. To truthfully reappear the dream scene, we process sentences into scene graphs that are a powerful structured representation for both images and language; then using a graph convolution network to obtain layout information, combining the layout information and a single feedforward network to generate the image. Subsequently, we apply Cycle-Consistent Adversarial Net (CycleGAN) to change the image into different styles according to the mood of users when dreaming. According to the experimental results, our method can generate complex and diverse dreams.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1511–1520 (2017)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in neural information processing systems, pp. 2672–2680 (2014)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)
Johnson, J., Gupta, A., Fei-Fei, L.: Image generation from scene graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1219–1228 (2018)
Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vision 123(1), 32–73 (2017)
Lao, Q., Havaei, M., Pesaranghader, A., Dutil, F., Jorio, L.D., Fevens, T.: Dual adversarial inference for text-to-image synthesis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7567–7576 (2019)
Li, B., Qi, X., Lukasiewicz, T., Torr, P.: Controllable text-to-image generation. In: Advances in Neural Information Processing Systems, pp. 2063–2073 (2019)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The stanford corenlp natural language processing toolkit. In: Association for Computational Linguistics (ACL) System Demonstrations, pp. 55–60 (2014). http://www.aclweb.org/anthology/P/P14/P14-5010
Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)
Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)
Schuster, S., Krishna, R., Chang, A., Fei-Fei, L., Manning, C.D.: Generating semantically precise scene graphs from textual descriptions for improved image retrieval. In: Proceedings of the fourth workshop on vision and language, pp. 70–80 (2015)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)
Tan, H., Liu, X., Li, X., Zhang, Y., Yin, B.: Semantics-enhanced adversarial nets for text-to-image synthesis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 10501–10510 (2019)
Xu, T., et al.: Attngan: Fine-grained text to image generation with attentional generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1316–1324 (2018)
Zhao, J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network. arXiv preprint arXiv:1609.03126 (2016)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Zhu, M., Pan, P., Chen, W., Yang, Y.: DM-GAN: dynamic memory generative adversarial networks for text-to-image synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5802–5810 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, J., Zhang, Z., Wang, X. (2020). Drawing Dreams. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12532. Springer, Cham. https://doi.org/10.1007/978-3-030-63830-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-63830-6_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63829-0
Online ISBN: 978-3-030-63830-6
eBook Packages: Computer ScienceComputer Science (R0)