Skip to main content

Entropy Repulsion for Semi-supervised Learning Against Class Mismatch

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12533))

Included in the following conference series:

  • 2429 Accesses

Abstract

A series of semi-supervised learning (SSL) algorithms have been proposed to alleviate the need for labeled data by leveraging large amounts of unlabeled data. Those algorithms have achieved good performance on standard benchmark datasets, however, their performance can degrade drastically when there exists a class mismatch between the labeled and unlabeled data, which is common in practice. In this work, we propose a new technique, entropy repulsion for mismatch (ERCM), to improve SSL against a class mismatch situation. Specifically, we design an entropy repulsion loss and a batch annealing and reloading mechanism, which work together to prevent potentially mismatched unlabeled data from participating in the early training stages as well as facilitate the minimization of the unsupervised loss term of traditional SSL algorithms. ERCM can be adopted to enhance existing SSL algorithms with minor extra computation cost and no change to their network structures. Our extensive experiments demonstrate that ERCM can significantly improve the performance of state-of-the-art SSL algorithms, namely Mean Teacher, Virtual Adversarial Training (VAT) and Mixmatch in various class-mismatch cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Performances of Split-BN+MT, Split-BN+VAT and ROIreg+VAT are reported in [22] and [9].

References

  1. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79, 151–175 (2009). https://doi.org/10.1007/s10994-009-5152-4

    Article  MathSciNet  Google Scholar 

  2. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: Mixmatch: a holistic approach to semi-supervised learning. In: Advances in Neural Information Processing Systems, pp. 5050–5060 (2019)

    Google Scholar 

  3. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised learning. IEEE Trans. Neural Netw. 20(3), 542 (2009). (chapelle, o. et al., eds.; 2006)

    Article  Google Scholar 

  4. Chen, Y., Zhu, X., Li, W., Gong, S.: Semi-supervised learning under class distribution mismatch

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a Large-scale hierarchical image database. In: CVPR 2009 (2009)

    Google Scholar 

  6. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096-2030 (2016)

    MathSciNet  Google Scholar 

  7. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: Advances in Neural Information Processing Systems, pp. 529–536 (2005)

    Google Scholar 

  8. Grandvalet, Y., Bengio, Y.: Entropy regularization. In: Semi-Supervised Learning, pp. 151–168 (2006)

    Google Scholar 

  9. Kaizuka, H., Nagasaki, Y., Sako, R.: Roi regularization for semi-supervised and supervised learning. arXiv preprint arXiv:1905.08615 (2019)

  10. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)

    Google Scholar 

  11. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242 (2016)

  12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  13. Lee, D.H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol. 3, p. 2 (2013)

    Google Scholar 

  14. Miyato, T., Maeda, S., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)

    Article  Google Scholar 

  15. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning (2011)

    Google Scholar 

  16. Oliver, A., Odena, A., Raffel, C.A., Cubuk, E.D., Goodfellow, I.: Realistic evaluation of deep semi-supervised learning algorithms. In: Advances in Neural Information Processing Systems, pp. 3235–3246 (2018)

    Google Scholar 

  17. Sajjadi, M., Javanmardi, M., Tasdizen, T.: Mutual exclusivity loss for semi-supervised deep learning. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 1908–1912. IEEE (2016)

    Google Scholar 

  18. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, pp. 1195–1204 (2017)

    Google Scholar 

  20. Xie, Q., Dai, Z., Hovy, E., Luong, M.T., Le, Q.V.: Unsupervised data augmentation. arXiv preprint arXiv:1904.12848 (2019)

  21. Yuan, M., Zhang, L., Li, X.Y., Xiong, H.: Comprehensive and efficient data labeling via adaptive model scheduling. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp. 1858–1861. IEEE (2020)

    Google Scholar 

  22. Zając, M., Żołna, K., Jastrzębski, S.: Split batch normalization: Improving semi-supervised learning under domain shift. arXiv preprint arXiv:1904.03515 (2019)

  23. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  24. Zhang, L., et al.: Crowdbuy: privacy-friendly image dataset purchasing via crowdsourcing. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp. 2735–2743. IEEE (2018)

    Google Scholar 

Download references

Acknowledgments

This research is supported by the National Key R&D Program of China 2018YFB0803400, NSF China under Grants No. 61822209, 61932016, 61751211, China National Funds for Distinguished Young Scientists with No.61625205, the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

You, X., Zhang, L., Yang, L., Yu, X., Liu, K. (2020). Entropy Repulsion for Semi-supervised Learning Against Class Mismatch. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12533. Springer, Cham. https://doi.org/10.1007/978-3-030-63833-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63833-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63832-0

  • Online ISBN: 978-3-030-63833-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics