Skip to main content

The Evaluation of Brain Age Prediction by Different Functional Brain Network Construction Methods

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12534))

Included in the following conference series:

Abstract

Brain functional network (BFN) analysis based on functional magnetic resonance imaging (fMRI) has proven to be a value method for revealing organization architectures in normal aging brains. However, a comprehensive comparison of different BFN methods for predicting brain age remains lacking. In this paper, we introduce a novel method to establish the BFN by using the Schatten-0 (\( S_0 \)) and \( \ell _0 \)-regularized low rank sparse representation (\({S_0}{{/}}{\ell _{{0}}}\) LSR) method. Moreover, the performance of different BFN methods in the brain age prediction with different feature extraction methods is evaluated. A support vector regression (SVR) is applied to the BFN data to predict brain age. Experimental results for resting state fMRI data sets show that compared with the Pearson correlation (PC), sparse representation (SR), low rank representation (LR), and low rank sparse representation (LSR) methods, the LSR method can achieve better modularity and predict brain age more accurately. The novel approach can enhance our understanding of the functional network of the aging brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sporns, O., Chialvo, D.R., Kaiser, M., et al.: Organization, development and function of complex brain networks. Trends Cogn. Sci. 8(9), 418–425 (2004)

    Article  Google Scholar 

  2. Muetzel, R.L., Blanken, L.M.E., Thijssen, S.F., et al.: Resting-state networks in 6-to-10 year old children. Hum. Brain Mapp. 37(12), 4286–4300 (2016)

    Article  Google Scholar 

  3. Vij, S.G., Nomi, J.S., Dajani, D.R., et al.: Evolution of spatial and temporal features of functional brain networks across the lifespan. Neuroimage 173(2018), 498–508 (2018)

    Article  Google Scholar 

  4. Sole-Padulles, C., Castro-Fornieles, J., de la Serna, E., et al.: Intrinsic connectivity networks from childhood to late adolescence: effects of age and sex. Cogn. Neurosci. 17, 35–44 (2016)

    Article  Google Scholar 

  5. Li, K., Guo, L., Li, G., et al.: Cortical surface based identification of brain networks using high spatial resolution resting state fMRI data. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 656–659. IEEE (2010)

    Google Scholar 

  6. Lee, K., Tak, S., Ye, J.C.: A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion. IEEE Trans. Med. Imaging 30(5), 1076–1089 (2011)

    Article  Google Scholar 

  7. Li, X., Hu, Z., Wang, H.: Overlapping community structure detection of brain functional network using non-negative matrix factorization. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9949, pp. 140–147. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46675-0_16

    Chapter  Google Scholar 

  8. Qiao, L., Zhang, H., Kim, M., et al.: Estimating functional brain networks by incorporating a modularity prior. Neuroimage 141, 399–407 (2016)

    Article  Google Scholar 

  9. Liu, G., Lin, Z., Yan, S., et al.: Robust recovery of subspace structures by low rank representation. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)

    Article  Google Scholar 

  10. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via \(\ell _{{0}}\) minimization. Proc. Nat. Acad. Sci. 100(5), 2197–2202 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Brbic, M., Kopriva, I.: \(\ell _{{0}}\)-motivated low rank sparse subspace clustering. IEEE Trans. Cybern. 50(4), 1711–1725 (2020)

    Google Scholar 

  12. Mwangi, B., Hasan, K.M., Soares, J.C.: Prediction of individual subject’s age across the human lifespan using diffusion tensor imaging: a machine learning approach. Neuroimage 75(2013), 58–67 (2013)

    Article  Google Scholar 

  13. Zhai, J., Li, K.: Predicting brain age based on spatial and temporal features of human brain functional networks. Front. Hum. Neurosci. 13(2019), 62 (2019)

    Article  Google Scholar 

  14. Nooner, K.B., Colcombe, S., Tobe, R., et al.: The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry. Front. Neurosci. 6, 152 (2012)

    Article  Google Scholar 

  15. Yan, C., Zang, Y.: DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front. Neurosci. 4, 13 (2010)

    Google Scholar 

  16. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. SOIA, vol. 49, pp. 185–212. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-9569-8_10

    Chapter  MATH  Google Scholar 

  17. Boyd, S., Parikh, N., Chu, E., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Trends Mach. Learn. 3(1), 1–122 (2011)

    MATH  Google Scholar 

  18. Yu, Y.L.: Better approximation and faster algorithm using the proximal average. In: Advances in Neural Information Processing Systems, pp. 458–466 (2013)

    Google Scholar 

  19. Blumensath, T., Davies, M.E.: Iterative thresholding for sparse approximations. J. Fourier Anal. Appl. 14(5–6), 629–654 (2008). https://doi.org/10.1007/s00041-008-9035-z

    Article  MathSciNet  MATH  Google Scholar 

  20. Liang, J., Fadili, J., Peyré, G.: A multi-step inertial forward-backward splitting method for non-convex optimization. In: Advances in Neural Information Processing Systems, vol. 2, no. 5, pp. 99–110 (2016)

    Google Scholar 

  21. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)

    Article  Google Scholar 

  22. Drucker, H., Burges, C.J.C., Kaufman, L., et al.: Support vector regression machines. In: Advances in Neural Information Processing Systems, vol. 9, pp. 155–161 (1997)

    Google Scholar 

  23. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)

    Article  Google Scholar 

  24. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  25. Vergun, S., Deshpande, A.S., et al.: Characterizing functional connectivity differences in aging adults using machine learning on resting state fMRI data. Front. Comput. Neurosci. 7, 38 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Nature Science Foundation of China under Grant 61773114 and the Key Research and Development Plan (Industry Foresight and Common Key Technology) of Jiangsu Province under Grant BE2017007-3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haixian Wang or Mengting Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, H., Xiong, X., Yan, J., Wang, H., Wei, M. (2020). The Evaluation of Brain Age Prediction by Different Functional Brain Network Construction Methods. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12534. Springer, Cham. https://doi.org/10.1007/978-3-030-63836-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63836-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63835-1

  • Online ISBN: 978-3-030-63836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics