Skip to main content

Relating Network-Diameter and Network-Minimum-Degree for Distributed Function Computation

  • Conference paper
  • First Online:
Future Data and Security Engineering (FDSE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12466))

Included in the following conference series:

  • 883 Accesses

Abstract

Distributed computing network-systems are modeled as directed/undirected graphs with vertices representing compute elements and adjacency-edges capturing their uni- or bi-directional communication. To quantify an intuitive tradeoff between two graph-parameters: minimum vertex-degree and diameter of the underlying graph, we formulate an extremal problem with the two parameters: for all positive integers n and d, the extremal value \(\nabla (n, d)\) denotes the least minimum vertex-degree among all connected order-n graphs with diameters of at most d. We prove matching upper and lower bounds on the extremal values of \(\nabla (n, d)\) for various combinations of n- and d-values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayaso, O., Shah, D., Dahleh, M.A.: Information theoretic bounds for distributed computation over networks of point-to-point channels. IEEE Trans. Inf. Theory 56(12), 6020–6039 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bondy, J.A., Murty, U.S.R.: Graph Theory. Graduate Texts in Mathematics, vol. 244. Springer London (2008)

    Google Scholar 

  3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  4. Dai, H.K., Toulouse, M.: Lower bound for function computation in distributed networks. In: Dang, T.K., Küng, J., Wagner, R., Thoai, N., Takizawa, M. (eds.) FDSE 2018. LNCS, vol. 11251, pp. 371–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03192-3_28

    Chapter  Google Scholar 

  5. Dai, H.K., Toulouse, M.: Lower bound on network diameter for distributed function computation. In: Dang, T.K., Küng, J., Takizawa, M., Bui, S.H. (eds.) FDSE 2019. LNCS, vol. 11814, pp. 239–251. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35653-8_16

    Chapter  Google Scholar 

  6. Dai, H.K., Toulouse, M.: Lower-bound study for function computation in distributed networks via vertex-eccentricity. Springer Nat. Comput. Sci. 1(1), 10:1–10:14 (2019)

    Google Scholar 

  7. Fich, F.E., Ruppert, E.: Hundreds of impossibility results for distributed computing. Distrib. Comput. 16(2–3), 121–163 (2003)

    Article  Google Scholar 

  8. Hendrickx, J.M., Olshevsky, A., Tsitsiklis, J.N.: Distributed anonymous discrete function computation. IEEE Trans. Autom. Control 56(10), 2276–2289 (2011)

    Article  MathSciNet  Google Scholar 

  9. Kashyap, A., Basar, T., Srikant, R.: Quantized consensus. Automatica 43(7), 1192–1203 (2007)

    Article  MathSciNet  Google Scholar 

  10. Katz, G., Piantanida, P., Debbah, M.: Collaborative distributed hypothesis testing. Computing Research Repository, abs/1604.01292 (2016)

    Google Scholar 

  11. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: lower and upper bounds. J. ACM 63(2), 17:1–17:44 (2016)

    Article  MathSciNet  Google Scholar 

  12. Olshevsky, A., Tsitsiklis, J.N.: Convergence speed in distributed consensus and averaging. SIAM J. Control Optim. 48(1), 33–55 (2009)

    Article  MathSciNet  Google Scholar 

  13. Raceala-Motoc, M., Limmer, S., Bjelakovic, I., Stanczak, S.: Distributed machine learning in the context of function computation over wireless networks. In: Matthews, M.B. (ed.) 52nd Asilomar Conference on Signals, Systems, and Computers, ACSSC 2018, Pacific Grove, CA, USA, 28–31 October 2018, pp. 291–297. IEEE (2018)

    Google Scholar 

  14. Sundaram, S.: Linear iterative strategies for information dissemination and processing in distributed systems. Ph.D. thesis, University of Illinois at Urbana-Champaign (2009)

    Google Scholar 

  15. Sundaram, S., Hadjicostis, C.N.: Distributed function calculation and consensus using linear iterative strategies. IEEE J. Sel. Areas Commun. 26(4), 650–660 (2008)

    Article  Google Scholar 

  16. Sundaram, S., Hadjicostis, C.N.: Distributed function calculation via linear iterative strategies in the presence of malicious agents. IEEE Trans. Autom. Control 56(7), 1495–1508 (2011)

    Article  MathSciNet  Google Scholar 

  17. Toulouse, M., Minh, B.Q.: Applicability and resilience of a linear encoding scheme for computing consensus. In: Muñoz, V.M., Wills, G., Walters, R.J., Firouzi, F., Chang, V. (eds.) Proceedings of the Third International Conference on Internet of Things, Big Data and Security, IoTBDS 2018, Funchal, Madeira, Portugal, 19–21 March 2018, pp. 173–184. SciTePress (2018)

    Google Scholar 

  18. Toulouse, M., Minh, B.Q., Minh, Q.T.: Invariant properties and bounds on a finite time consensus algorithm. Trans. Large-Scale Data Knowl. Centered Syst. 41, 32–58 (2019)

    Google Scholar 

  19. Wang, L., Xiao, F.: Finite-time consensus problems for networks of dynamic agents. IEEE Trans. Autom. Control 55(4), 950–955 (2010)

    Article  MathSciNet  Google Scholar 

  20. Xiao, L., Boyd, S.P., Kim, S.-J.: Distributed average consensus with least-mean-square deviation. J. Parallel Distrib. Comput. 67(1), 33–46 (2007)

    Article  Google Scholar 

  21. Xu, A.: Information-theoretic limitations of distributed information processing. Ph.D. thesis, University of Illinois at Urbana-Champaign (2016)

    Google Scholar 

  22. Xu, A., Raginsky, M.: Information-theoretic lower bounds for distributed function computation. IEEE Trans. Inf. Theory 63(4), 2314–2337 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, H.K., Toulouse, M. (2020). Relating Network-Diameter and Network-Minimum-Degree for Distributed Function Computation. In: Dang, T.K., Küng, J., Takizawa, M., Chung, T.M. (eds) Future Data and Security Engineering. FDSE 2020. Lecture Notes in Computer Science(), vol 12466. Springer, Cham. https://doi.org/10.1007/978-3-030-63924-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63924-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63923-5

  • Online ISBN: 978-3-030-63924-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics