Skip to main content

Complex Dynamic Behaviors in a Discrete Chialvo Neuron Model Induced by Switching Mechanism

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2020 (ISNN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12557))

Included in the following conference series:

Abstract

Switching policy has been considered in many biological systems and can exhibit rich dynamical behaviors which include different types of the bifurcations and deterministic chaos. The Chialvo neuron model analyzed in this article illustrates how bifurcations and multiple attractors can arise from the combination of the switching mechanism acting on membrane potential. The elementary dynamics of the system without the switching policy are analyzed firstly using phase plane methods. The comparisons of the bifurcation analysis with or without switching mechanism near the fixed points are provided. It can be concluded that the switching policy can be prone to give rise to the coexistence of multiple periodic attractors, which indicates there exist abundant firing modes in the switching system with the same system parameters and different initial values. More complex bifurcation and dynamical behaviors can be observed since applying the switching policy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brogliato, B.: Erratum to: nonsmooth mechanics. Nonsmooth Mechanics. CCE, pp. E1–E11. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28664-8_9

    Chapter  Google Scholar 

  2. Chialvo, D.R.: Generic excitable dynamics on a two-dimensional map. Chaos, Solitons Fractals 5(3–4), 461–479 (1995)

    Article  Google Scholar 

  3. da Silveira Costa, M.I.: Harvesting induced fluctuations: insights from a threshold management policy. Math. Biosci. 205(1), 77–82 (2007)

    Article  MathSciNet  Google Scholar 

  4. da Silveira Costa, M.I., Meza, M.E.M.: Application of a threshold policy in the management of multispecies fisheries and predator culling. Math. Med. Biol. 23(1), 63–75 (2006)

    Article  Google Scholar 

  5. Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Side. Kluwer Academic Publishers, Boston (1988)

    Book  Google Scholar 

  6. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Article  Google Scholar 

  7. Gang, Z., Tonnelier, A.: Chaotic solutions in the quadratic integrate-and-fire neuron with adaptation. Cogn. Neurodyn. 3(3), 197–204 (2009)

    Article  Google Scholar 

  8. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. Roy. Soc. London B Biol. Sci. 221, 87–102 (1984)

    Article  Google Scholar 

  9. Hodgkin, A.L., Huxley, A.F.: The components of membrane conductance in the giant axon of Loligo. J. Physiol. 116(4), 473–496 (1952)

    Article  Google Scholar 

  10. Hodgkin, A.L., Huxley, A.F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116(4), 449–472 (1952)

    Article  Google Scholar 

  11. Hodgkin, A.L., Huxley, A.F.: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. 116(4), 497–506 (1952)

    Article  Google Scholar 

  12. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  13. Hodgkin, A.L., Huxley, A.F., Katz, B.: Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116(4), 424–448 (1952)

    Article  Google Scholar 

  14. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Networks 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  15. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Networks 15(5), 1063–1070 (2004)

    Article  Google Scholar 

  16. Izhikevich, E.M., Hoppensteadt, F.: Classification of bursting mappings. Int. J. Bifurcat. Chaos 14(11), 3847–3854 (2004)

    Article  MathSciNet  Google Scholar 

  17. Jing, Z., Yang, J., Feng, W.: Bifurcation and chaos in neural excitable system. Chaos Solitons Fractals 27(1), 197–215 (2006)

    Article  MathSciNet  Google Scholar 

  18. Meza, M.E.M., Bhaya, A., Kaszkurewicz, E., da Silveira Costa, M.I.: Threshold policies control for predator-prey systems using a control Liapunov function approach. Theor. Popul. Biol. 67(4), 273–284 (2005)

    Article  Google Scholar 

  19. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)

    Article  Google Scholar 

  20. Nobukawa, S., Nishimura, H., Yamanishi, T.: Routes to chaos induced by a discontinuous resetting process in a hybrid spiking neuron model. Sci. Rep. 8(1), 379 (2018). https://doi.org/10.1038/s41598-017-18783-z

    Article  Google Scholar 

  21. Nobukawa, S., Nishimura, H., Yamanishi, T., Liu, J.Q.: Chaotic states induced by resetting process in Izhikevich neuron model. J. Artif. Intell. Soft Comput. Res. 5(2), 109–119 (2015)

    Article  Google Scholar 

  22. Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electro-mechanical Systems. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  23. Wang, F., Cao, H.: Mode locking and quasiperiodicity in a discrete-time Chialvo neuron model. Commun. Nonlinear Sci. Numer. Simul. 56, 481–489 (2017)

    Article  MathSciNet  Google Scholar 

  24. Yang, Y., Liao, X., Dong, T.: Period-adding bifurcation and chaos in a hybrid Hindmarsh-Rose model. Neural Netw. 105, 26–35 (2018)

    Article  Google Scholar 

  25. Yang, Y., Xiaofeng, L.: Filippov Hindmarsh-Rose neuronal model with threshold policy control. IEEE Trans. Neural Netw. Learn. Syst. 30(1), 306–311 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 11961024, in part by Youth Project of Scientific and Technological Research Program of Chongqing Education Commission (KJQN201901203, KJQN201901218), in part by the Chongqing Technological Innovation and Application Project under Grant cstc2018jszx-cyzdX0171, in part by Chongqing sBasic and Frontier Research Project under Grant cstc2019jcyj-msxm2105, in part by the Science and Technology Research Program of Chongqing Municipal Education Commission under Grant KJQN201900816, in part by Chongqing Social Science Planning Project under Grant 2019BS053.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Yang or Tao Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Y., Xiang, C., Dai, X., Qi, L., Dong, T. (2020). Complex Dynamic Behaviors in a Discrete Chialvo Neuron Model Induced by Switching Mechanism. In: Han, M., Qin, S., Zhang, N. (eds) Advances in Neural Networks – ISNN 2020. ISNN 2020. Lecture Notes in Computer Science(), vol 12557. Springer, Cham. https://doi.org/10.1007/978-3-030-64221-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64221-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64220-4

  • Online ISBN: 978-3-030-64221-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics