Skip to main content

Robophysical Modeling of Bilaterally Activated and Soft Limbless Locomotors

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12413))

Included in the following conference series:

  • 1362 Accesses

Abstract

Animals like snakes use traveling waves of body bends to move in multi-component terrestrial terrain. Previously we studied [Schiebel et al., PNAS, 2019] a desert specialist, Chionactis occipitalis, traversing sparse rigid obstacles and discovered that passive body buckling, facilitated by unilateral muscle activation, allowed obstacle negotiation without additional control input. Most snake robots have one motor per joint whose positions are precisely controlled. In contrast, we introduce a robophysical model designed to capture muscle morphology and activation patterns in snakes; pairs of muscles, one on each side of the spine, create body bends by unilaterally contracting. The robot snake has 8 joints and 16 motors. The joint angle is set by activating the motor on one side, spooling a cable around a pulley to pull the joint that direction. Inspired by snake muscle activation patterns [Jayne, J. Morph., 1988], we programmed the motors to be unilaterally active and propagate a sine wave down the body. When a motor is inactive, it is unspooled so that its wire cannot generate tension. Pairs of motors can thus resist forces which attempt to lengthen active wires but not those pushing them shorter, resulting in a kinematically soft robot that can be passively deformed by the surroundings. The robot can move on hard ground when drag anisotropy is large, achieved via wheels attached to the bottom of each segment, passively re-orient to track a wall upon a head-on collision, and traverse a multi-post array with open loop control facilitated by buckling and emergent reversal behaviors. In summary, we present a new approach to design limbless robots, offloading the control into the mechanics of the robot, a successful strategy in legged robots [Saranli et al., IJRR, 2001].

Supported by NSF PoLS PHY-1205878, PHY-1150760, and CMMI-1361778. ARO W911NF-11-1-0514, U.S. DoD, NDSEG 32 CFR 168a (P.E.S.), and the NSF Simons Southeast Center for Mathematics and Biology (SCMB).

P. E. Schiebel and M. C. Maisonneuve—These authors contributed equally to the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The sign of the commanded joint angle velocity was used to determine state.

References

  1. Astley, H.C., et al.: Side-impact collision: mechanics of obstacle negotiation in sidewinding snakes. bioRxiv (2020)

    Google Scholar 

  2. Bayraktaroglu, Z.Y., Kilicarslan, A., Kuzucu, A., Hugel, V., Blazevic, P.: Design and control of biologically inspired wheel-less snake-like robot. In: The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006, BioRob 2006, pp. 1001–1006. IEEE (2006)

    Google Scholar 

  3. Butler, V.J., et al.: A consistent muscle activation strategy underlies crawling and swimming in caenorhabditis elegans. J. Roy. Soc. Interface 12(102), 20140963 (2014)

    Article  Google Scholar 

  4. Cowan, N.J., Lee, J., Full, R.J.: Task-level control of rapid wall following in the american cockroach. J. Exp. Bio. 209(9), 1617–1629 (2006)

    Article  Google Scholar 

  5. Gans, C.: Locomotion of limbless vertebrates: pattern and evolution. Herpetologica 42(1), 33–46 (1986)

    Google Scholar 

  6. Hirose, S.: Biologically Inspired Robots: Snake-Like Locomotors and Manipulators. Oxford University Press, Oxford (1993)

    Google Scholar 

  7. Hopkins, J.K., Spranklin, B.W., Gupta, S.K.: A survey of snake-inspired robot designs. Bioinspir. Biomimet. 4(2), 021001 (2009)

    Article  Google Scholar 

  8. Hu, D.L., Nirody, J., Scott, T., Shelley, M.J.: The mechanics of slithering locomotion. Proc. Nat. Acad. Sci. USA 106(25), 10081–10085 (2009)

    Article  Google Scholar 

  9. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)

    Article  Google Scholar 

  10. Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)

    Article  Google Scholar 

  11. Inoue, K., Nakamura, K., Suzuki, M., Mori, Y., Fukuoka, Y., Shiroma, N.: Biological system models reproducing snakes’ musculoskeletal system. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2383–2388. IEEE (2010)

    Google Scholar 

  12. Jayne, B.C.: Muscular mechanisms of snake locomotion: an electromyographic study of lateral undulation of the florida banded water snake (nerodia fasciata) and the yellow rat snake (elaphe obsoleta). J. Morphol. 197(2), 159–181 (1988)

    Article  Google Scholar 

  13. Kano, T., Ishiguro, A.: Obstacles are beneficial to me! Scaffold-based locomotion of a snake-like robot using decentralized control. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3273–3278. IEEE (2013)

    Google Scholar 

  14. Kano, T., Yoshizawa, R., Ishiguro, A.: Tegotae-based decentralised control scheme for autonomous gait transition of snake-like robots. Bioinspir. Biomimet. 12(4), 046009 (2017)

    Article  Google Scholar 

  15. Liljeback, P., Pettersen, K.Y., Stavdahl, Ø., Gravdahl, J.T.: Experimental investigation of obstacle-aided locomotion with a snake robot. IEEE Trans. Rob. 27(4), 792–800 (2011)

    Article  Google Scholar 

  16. Liljebäck, P., Pettersen, K.Y., Stavdahl, Ø., Gravdahl, J.T.: A review on modelling, implementation, and control of snake robots. Robot. Auton. Syst. 60(1), 29–40 (2012)

    Article  Google Scholar 

  17. Mosauer, W.: Locomotion and diurnal range of sonora occipitalis, crotalus cerastes, and crotalus atrox as seen from their tracks. Copeia 1933(1), 14–16 (1933)

    Article  Google Scholar 

  18. Ponte, H., et al.: Visual sensing for developing autonomous behavior in snake robots. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2779–2784. IEEE (2014)

    Google Scholar 

  19. Rieser, J.M., et al.: Dynamics of scattering in undulatory active collisions. Phys. Rev. E 99(2), 022606 (2019)

    Article  Google Scholar 

  20. Rollinson, D., et al.: Design and architecture of a series elastic snake robot. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4630–4636. IEEE (2014)

    Google Scholar 

  21. Sanfilippo, F., Azpiazu, J., Marafioti, G., Transeth, A.A., Stavdahl, Ø., Liljebäck, P.: Perception-driven obstacle-aided locomotion for snake robots: the state of the art, challenges and possibilities. Appl. Sci. 7(4), 336 (2017)

    Article  Google Scholar 

  22. Sanfilippo, F., Helgerud, E., Stadheim, P.A., Aronsen, S.L.: Serpens: a highly compliant low-cost ros-based snake robot with series elastic actuators, stereoscopic vision and a screw-less assembly mechanism. Appl. Sci. 9(3), 396 (2019)

    Article  Google Scholar 

  23. Saranli, U., Buehler, M., Koditschek, D.E.: RHex: a simple and highly mobile hexapod robot. Int. J. Robot. Res. 20(7), 616–631 (2001)

    Article  Google Scholar 

  24. Sato, T., Kano, T., Ishiguro, A.: On the applicability of the decentralized control mechanism extracted from the true slime mold: a robotic case study with a serpentine robot. Bioinspir. Biomimet. 6(2), 026006 (2011)

    Article  Google Scholar 

  25. Schiebel, P.E., et al.: Mitigating memory effects during undulatory locomotion on hysteretic materials. Elife 9, e51412 (2020)

    Article  Google Scholar 

  26. Schiebel, P.E., Rieser, J.M., Hubbard, A.M., Chen, L., Rocklin, D.Z., Goldman, D.I.: Mechanical diffraction reveals the role of passive dynamics in a slithering snake. Proc. Nat. Acad. Sci. USA 116(11), 4798–4803 (2019)

    Article  Google Scholar 

  27. Tanaka, M., Kon, K., Tanaka, K.: Range-sensor-based semiautonomous whole-body collision avoidance of a snake robot. IEEE Trans. Control Syst. Technol. 23(5), 1927–1934 (2015)

    Article  Google Scholar 

  28. Transeth, A.A.: Snake robot obstacle-aided locomotion: modeling, simulations, and experiments. IEEE Trans. Rob. 24(1), 88–104 (2008)

    Article  Google Scholar 

  29. Travers, M.J., Whitman, J., Schiebel, P., Goldman, D., Choset, H.: Shape-based compliance in locomotion. In: Robotics: Science and Systems (2016)

    Google Scholar 

  30. Wu, X., Ma, S.: Neurally controlled steering for collision-free behavior of a snake robot. IEEE Trans. Control Syst. Technol. 21(6), 2443–2449 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel I. Goldman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schiebel, P.E., Maisonneuve, M.C., Diaz, K., Rieser, J.M., Goldman, D.I. (2020). Robophysical Modeling of Bilaterally Activated and Soft Limbless Locomotors. In: Vouloutsi, V., Mura, A., Tauber, F., Speck, T., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2020. Lecture Notes in Computer Science(), vol 12413. Springer, Cham. https://doi.org/10.1007/978-3-030-64313-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64313-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64312-6

  • Online ISBN: 978-3-030-64313-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics