Skip to main content

Using the Neural Circuit of the Insect Central Complex for Path Integration on a Micro Aerial Vehicle

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2020)

Abstract

We have deployed an anatomically constrained neural model for path integration on a real world, holonomic aerial platform. Based on the insect central complex, the model combines estimated heading and ground speed information to maintain a location estimate that can be used to steer the agent directly home after convoluted outward journeys. We implement a biologically plausible method to estimate ground speed using optical flow. We discover that a downward viewing, mechanically stabilised and height compensated vision system performs well in a range of natural environments, even when visual acuity is reduced to \(3^{\circ }\)/pixel. In a flat outdoor environment, the worst case final displacement error increases at a rate 1.5 m 100 m outbound travel. The field of view of the vision system has no impact on odometry performance.

Supported by the Edinburgh Centre for Robotics and the Engineering and Physical Sciences Research Council. We thank Stanley Heinze who provided the neural data and the initial illustration for Fig. 3. Thanks also to Jiale Lu for his initial work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X_50

    Chapter  Google Scholar 

  2. Franz, M.O., Krapp, H.G.: Wide-field, motion-sensitive neurons and matched filters for optic flow fields. Biol. Cybern. 83(3), 185–197 (2000). https://doi.org/10.1007/s004220000163

    Article  Google Scholar 

  3. von Frish, K.: The Dance Language and Orientation of Bees. Oxford University Press, London (1967). https://doi.org/10.4159/harvard.9780674418776

    Book  Google Scholar 

  4. Gkanias, E., Risse, B., Mangan, M., Webb, B.: From skylight input to behavioural output: a computational model of the insect polarised light compass. PLOS Comput. Biol. 15(7), 1–30 (2019). https://doi.org/10.1371/journal.pcbi.1007123

    Article  Google Scholar 

  5. Homberg, U., Heinze, S., Pfeiffer, K., Kinoshita, M., El Jundi, B.: Central neural coding of sky polarization in insects. Philos. Trans. R. Soc. B: Biol. Sci. 366(1565), 680–687 (2011)

    Article  Google Scholar 

  6. Kohn, J.R., Heath, S.L., Behnia, R.: Eyes matched to the prize: the state of matched filters in insect visual circuits. Front. Neural Circ. 12, 26 (2018)

    Article  Google Scholar 

  7. Longden, K.D., Wicklein, M., Hardcastle, B.J., Huston, S.J., Krapp, H.G.: Spike burst coding of translatory optic flow and depth from motion in the fly visual system. Curr. Biol. 27(21), 3225–3236.e3 (2017). https://doi.org/10.1016/j.cub.2017.09.044

    Article  Google Scholar 

  8. Seelig, J.D., Jayaraman, V.: Neural dynamics for landmark orientation and angular path integration. Nature 521(7551), 186–191 (2015)

    Article  Google Scholar 

  9. Serres, J.R., Ruffier, F.: Optic flow-based collision-free strategies: from insects to robots. Arthropod Struct. Dev. 46(5), 703–717 (2017). https://doi.org/10.1016/j.asd.2017.06.003. http://www.sciencedirect.com/science/article/pii/S146780391730066X

    Article  Google Scholar 

  10. Srinivasan, M., Lehrer, M., Kirchner, W., Zhang, S.: Range perception through apparent image speed in freely flying honeybees. Vis. Neurosci. 6, 519–535 (1991). https://doi.org/10.1017/S095252380000136X

    Article  Google Scholar 

  11. Stone, T., et al.: An anatomically constrained model for path integration in the bee brain. Curr. Biol. 27(20), 3069–3085.e11 (2017). https://doi.org/10.1016/j.cub.2017.08.052

    Article  Google Scholar 

  12. Tammero, L.F., Dickinson, M.H.: The influence of visual landscape on the free flight behavior of the fruit fly drosophila melanogaster. J. Exp. Biol. 205(3), 327–343 (2002). https://jeb.biologists.org/content/205/3/327

    Google Scholar 

  13. Taylor, G.J., Tichit, P., Schmidt, M.D., Bodey, A.J., Rau, C., Baird, E.: Bumblebee visual allometry results in locally improved resolution and globally improved sensitivity. eLife 8, e40613 (2019). https://doi.org/10.7554/eLife.40613

    Article  Google Scholar 

  14. Viollet, S., Zeil, J.: Feed-forward and visual feedback control of head roll orientation in wasps (Polistes Humilis, Vespidae, Hymenoptera). J. Exp. Biol. 216(7), 1280–1291 (2013). https://doi.org/10.1242/jeb.074773

    Article  Google Scholar 

  15. Wystrach, A., Mangan, M., Webb, B.: Optimal cue integration in ants. Proc. Roy. Soc. B Biol. Sci. 282(1816), 20151484 (2015). https://royalsocietypublishing.org/doi/10.1098/rspb.2015.1484

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Stankiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stankiewicz, J., Webb, B. (2020). Using the Neural Circuit of the Insect Central Complex for Path Integration on a Micro Aerial Vehicle. In: Vouloutsi, V., Mura, A., Tauber, F., Speck, T., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2020. Lecture Notes in Computer Science(), vol 12413. Springer, Cham. https://doi.org/10.1007/978-3-030-64313-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64313-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64312-6

  • Online ISBN: 978-3-030-64313-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics