Abstract
In this study, we proposed two methods for AutoImplant (https://autoimplant.grand-challenge.org/) - the cranial implant design challenge. The shape of the implant is predicted based on the inputted defective skull. This task can be accomplished either by directly predicting the implant with the defective skull, or indirectly rebuilding the complete skull and then taking the difference between the defective and complete skulls. In our work, a deep learning model is applied to automatically predict the implant. In order to solve the problem that high resolution images can often not be directly inputted to the deep learning model, two proposed methods of resize and patch-based are examined. On the test set, the proposed resize method achieves an average dice similarity score (DSC) of 0.7350 and a Hausdorff distance (HD) of 7.2425 mm, while the proposed patch-based method achieves an average DSC of 0.8887 and a HD of 5.5339 mm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Digital evolution of cranial surgery. A case study by renishaw plc in new mills, Wotton-under-Edge Gloucestershire, GL12 8JR United Kingdom (2017)
Casamitjana, A., Catà, M., Sánchez, I., Combalia, M., Vilaplana, V.: Cascaded V-Net using ROI masks for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 381–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_33
Chilamkurthy, S., et al.: Development and validation of deep learning algorithms for detection of critical findings in head CT scans (2018). http://arxiv.org/abs/1803.05854
Dai, A., Qi, C., Nießner, M.: Shape completion using 3D-encoder-predictor CNNs and shape synthesis (2016). http://arxiv.org/abs/1612.00101
Han, X., Li, Z., Huang, H., Kalogerakis, E., Yu, Y.: High-resolution shape completion using deep neural networks for global structure and local geometry inference (2017). http://arxiv.org/abs/1709.07599
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385
Hesamian, M., Jia, W., He, X., Kennedy, P.: Deep learning techniques for medical image segmentation: achievements and challenges. J. Digit. Imaging 32, 582–596 (2019)
Lei, Y., et al.: Ultrasound prostate segmentation based on multidirectional deeply supervised v-net. Med. Phys. 46(7), 3194–3206 (2019)
Li, J., Egger, J.: Towards the automatization of cranial implant design for 3D printing (2019). https://doi.org/10.13140/RG.2.2.16144.56324
Li, J., Pepe, A., Gsaxner, C., Campe, G., Egger, J.: A baseline approach for AutoImplant: the MICCAI 2020 cranial implant design challenge. In: Syeda-Mahmood, T., et al. (eds.) CLIP/ML-CDS -2020. LNCS, vol. 12445, pp. 75–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60946-7_8. http://arxiv.org/abs/2006.12449
Li, J., Pepe, A., Gsaxner, C., Egger, J.: An online platform for automatic skull defect restoration and cranial implant design (2020). http://arxiv.org/abs/2006.00980
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. CoRR abs/1411.4038 (2014). http://arxiv.org/abs/1411.4038
López-Linares, K., et al.: Fully automatic detection and segmentation of abdominal aortic thrombus in post-operative CTA images using deep convolutional neural networks. Med. Image Anal. 46 (2018). https://doi.org/10.1016/j.media.2018.03.010
Milletari, F., Navab, N., Ahmadi, S.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. CoRR (2016). http://arxiv.org/abs/1606.04797
Morais, A., Egger, J., Alves, V.: Automated computer-aided design of cranial implants using a deep volumetric convolutional denoising autoencoder. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST’19 2019. AISC, vol. 932, pp. 151–160. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16187-3_15
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. CoRR (2015). http://arxiv.org/abs/1505.04597
Tang, H., et al.: Segmentation of anatomical structures in cardiac CTA using multi-label v-net. SPIE Med. Imaging 10574 (2018). https://doi.org/10.1117/12.2293811
Acknowledgements
This work was supported by CAMed (COMET K-Project 871132), which is funded by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT) and the Austrian Federal Ministry for Digital and Economic Affairs (BMDW) and the Styrian Business Promotion Agency (SFG). Furthermore, the Austrian Science Fund (FWF) KLI 678-B31: “enFaced: Virtual and Augmented Reality Training and Navigation Module for 3D-Printed Facial Defect Reconstructions” and the TU Graz LEAD Project “Mechanics, Modeling and Simulation of Aortic Dissection”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Jin, Y., Li, J., Egger, J. (2020). High-Resolution Cranial Implant Prediction via Patch-Wise Training. In: Li, J., Egger, J. (eds) Towards the Automatization of Cranial Implant Design in Cranioplasty. AutoImplant 2020. Lecture Notes in Computer Science(), vol 12439. Springer, Cham. https://doi.org/10.1007/978-3-030-64327-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-64327-0_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-64326-3
Online ISBN: 978-3-030-64327-0
eBook Packages: Computer ScienceComputer Science (R0)