Skip to main content

High-Resolution Cranial Implant Prediction via Patch-Wise Training

  • Conference paper
  • First Online:
Towards the Automatization of Cranial Implant Design in Cranioplasty (AutoImplant 2020)

Abstract

In this study, we proposed two methods for AutoImplant (https://autoimplant.grand-challenge.org/) - the cranial implant design challenge. The shape of the implant is predicted based on the inputted defective skull. This task can be accomplished either by directly predicting the implant with the defective skull, or indirectly rebuilding the complete skull and then taking the difference between the defective and complete skulls. In our work, a deep learning model is applied to automatically predict the implant. In order to solve the problem that high resolution images can often not be directly inputted to the deep learning model, two proposed methods of resize and patch-based are examined. On the test set, the proposed resize method achieves an average dice similarity score (DSC) of 0.7350 and a Hausdorff distance (HD) of 7.2425 mm, while the proposed patch-based method achieves an average DSC of 0.8887 and a HD of 5.5339 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Digital evolution of cranial surgery. A case study by renishaw plc in new mills, Wotton-under-Edge Gloucestershire, GL12 8JR United Kingdom (2017)

    Google Scholar 

  2. Casamitjana, A., Catà, M., Sánchez, I., Combalia, M., Vilaplana, V.: Cascaded V-Net using ROI masks for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 381–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_33

    Chapter  Google Scholar 

  3. Chilamkurthy, S., et al.: Development and validation of deep learning algorithms for detection of critical findings in head CT scans (2018). http://arxiv.org/abs/1803.05854

  4. Dai, A., Qi, C., Nießner, M.: Shape completion using 3D-encoder-predictor CNNs and shape synthesis (2016). http://arxiv.org/abs/1612.00101

  5. Han, X., Li, Z., Huang, H., Kalogerakis, E., Yu, Y.: High-resolution shape completion using deep neural networks for global structure and local geometry inference (2017). http://arxiv.org/abs/1709.07599

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

  7. Hesamian, M., Jia, W., He, X., Kennedy, P.: Deep learning techniques for medical image segmentation: achievements and challenges. J. Digit. Imaging 32, 582–596 (2019)

    Article  Google Scholar 

  8. Lei, Y., et al.: Ultrasound prostate segmentation based on multidirectional deeply supervised v-net. Med. Phys. 46(7), 3194–3206 (2019)

    Google Scholar 

  9. Li, J., Egger, J.: Towards the automatization of cranial implant design for 3D printing (2019). https://doi.org/10.13140/RG.2.2.16144.56324

  10. Li, J., Pepe, A., Gsaxner, C., Campe, G., Egger, J.: A baseline approach for AutoImplant: the MICCAI 2020 cranial implant design challenge. In: Syeda-Mahmood, T., et al. (eds.) CLIP/ML-CDS -2020. LNCS, vol. 12445, pp. 75–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60946-7_8. http://arxiv.org/abs/2006.12449

    Chapter  Google Scholar 

  11. Li, J., Pepe, A., Gsaxner, C., Egger, J.: An online platform for automatic skull defect restoration and cranial implant design (2020). http://arxiv.org/abs/2006.00980

  12. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. CoRR abs/1411.4038 (2014). http://arxiv.org/abs/1411.4038

  13. López-Linares, K., et al.: Fully automatic detection and segmentation of abdominal aortic thrombus in post-operative CTA images using deep convolutional neural networks. Med. Image Anal. 46 (2018). https://doi.org/10.1016/j.media.2018.03.010

  14. Milletari, F., Navab, N., Ahmadi, S.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. CoRR (2016). http://arxiv.org/abs/1606.04797

  15. Morais, A., Egger, J., Alves, V.: Automated computer-aided design of cranial implants using a deep volumetric convolutional denoising autoencoder. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST’19 2019. AISC, vol. 932, pp. 151–160. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16187-3_15

    Chapter  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. CoRR (2015). http://arxiv.org/abs/1505.04597

  17. Tang, H., et al.: Segmentation of anatomical structures in cardiac CTA using multi-label v-net. SPIE Med. Imaging 10574 (2018). https://doi.org/10.1117/12.2293811

Download references

Acknowledgements

This work was supported by CAMed (COMET K-Project 871132), which is funded by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT) and the Austrian Federal Ministry for Digital and Economic Affairs (BMDW) and the Styrian Business Promotion Agency (SFG). Furthermore, the Austrian Science Fund (FWF) KLI 678-B31: “enFaced: Virtual and Augmented Reality Training and Navigation Module for 3D-Printed Facial Defect Reconstructions” and the TU Graz LEAD Project “Mechanics, Modeling and Simulation of Aortic Dissection”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Egger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, Y., Li, J., Egger, J. (2020). High-Resolution Cranial Implant Prediction via Patch-Wise Training. In: Li, J., Egger, J. (eds) Towards the Automatization of Cranial Implant Design in Cranioplasty. AutoImplant 2020. Lecture Notes in Computer Science(), vol 12439. Springer, Cham. https://doi.org/10.1007/978-3-030-64327-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64327-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64326-3

  • Online ISBN: 978-3-030-64327-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics