Abstract
We characterize self-stabilizing functions in population protocols for complete interaction graphs. In particular, we investigate self-stabilization in systems of n finite state agents in which a malicious scheduler selects an arbitrary sequence of pairwise interactions under a global fairness condition. We show a necessary and sufficient condition for self-stabilization. Specifically we show that functions without certain set-theoretic conditions are impossible to compute in a self-stabilizing manner. Our main contribution is in the converse, where we construct a self-stabilizing protocol for all other functions that meet this characterization. Our positive construction uses Dickson’s Lemma to develop the notion of the root set, a concept that turns out to fundamentally characterize self-stabilization in this model. We believe it may lend to characterizing self-stabilization in more general models as well.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18, 235–253 (2006)
Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distrib. Comput. 20(4), 279–304 (2007)
Angluin, D., Aspnes, J., Fischer, M., Jiang, H.: Self-stabilizing populationprotocols. ACM Trans. Auton. Adapt. Syst. 3 (2008)
Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Garbinato, B., Miranda, H., Rodrigues, L. (eds.) Middleware for Network Eccentric and Mobile Applications. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-89707-1_5
Awerbuch, B., Ostrovsky, R.: Memory-efficient and self-stabilizing network RESET. In: PODC 1994, pp. 254–263 (1994)
Beauquier, J., Blanchard, P., Burman, J.: Self-stabilizing leader election in population protocols over arbitrary communication graphs. In: Baldoni, R., Nisse, N., van Steen, M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 38–52. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03850-6_4
Beauquier, J., Burman, J., Clement, J., Kutten, S.: Brief announcement. In: PODC 2009. ACM Press (2009)
Beauquier, J., Burman, J., Kutten, S.: Making population protocols self-stabilizing. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 90–104. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05118-0_7
Burman, J., Doty, D., Nowak, T., Severson, E.E., Xu, C.: Efficient self-stabilizing leader election in population protocols (2020)
Cai, S., Izumi, T., Wada, K.: How to prove impossibility under global fairness: on space complexity of self-stabilizing leader election on a population protocol model. Theor. Comput. Syst. 50, 433–445 (2012)
Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical reaction networks. In: Condon, A., Harel, D., Kok, J., Salomaa, A., Winfree, E. (eds.) Algorithmic Bioprocesses, pp. 543–584. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88869-7_27
Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. Am. J. Math. 35(4), 413–422 (1913)
Dijkstra, E.: Self-stabilizing systems in spite of distributed control. Commun. ACM, 643–644 (1974)
Fischer, M., Jiang, H.: Self-stabilizing leader election in networks of finite-state anonymous agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 395–409. Springer, Heidelberg (2006). https://doi.org/10.1007/11945529_28
Goldwasser, S., Ostrovsky, R., Scafuro, A., Sealfon, A.: Population stability: regulating size in the presence of an adversary. In: PODC 2018, pp. 397–406 (2018)
Izumi, T., Kinpara, K., Izumi, T., Wada, K.: Space-efficient self-stabilizing counting population protocols on mobile sensor networks. Theoret. Comput. Sci. 552, 99–108 (2014)
Mathur, S., Ostrovsky, R.: A combinatorial characterization of self-stabilizing population protocols. arXiv:2010.03869 (2020)
Mayer, A., Ofek, Y., Ostrovsky, R., Yung, M.: Self-stabilizing symmetry breaking in constant-space (extended abstract). In: Proceedings 24th ACM Symposium on Theory of Computing, pp. 667–678 (1992)
Sudo, Y., Ooshita, F., Kakugawa, H., Masuzawa, T., Datta, A.K., Larmore, L.L.: Loosely-Stabilizing Leader Election with Polylogarithmic Convergence Time. In: OPODIS 2018, vol. 125, pp. 30:1–30:16 (2018)
Acknowledgments
We thank the anonymous reviewers for their helpful comments. This work is supported in part by DARPA under Cooperative Agreement No: HR0011-20-2-0025, NSF-BSF Grant 1619348, US-Israel BSF grant 2012366, Google Faculty Award, JP Morgan Faculty Award, IBM Faculty Research Award, Xerox Faculty Research Award, OKAWA Foundation Research Award, B. John Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin Corporation Research Award. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of DARPA, the Department of Defense, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes not withstanding any copyright annotation therein.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Mathur, S., Ostrovsky, R. (2020). A Combinatorial Characterization of Self-stabilizing Population Protocols. In: Devismes, S., Mittal, N. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2020. Lecture Notes in Computer Science(), vol 12514. Springer, Cham. https://doi.org/10.1007/978-3-030-64348-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-64348-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-64347-8
Online ISBN: 978-3-030-64348-5
eBook Packages: Computer ScienceComputer Science (R0)