Skip to main content

A Combinatorial Characterization of Self-stabilizing Population Protocols

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12514))

  • 294 Accesses

Abstract

We characterize self-stabilizing functions in population protocols for complete interaction graphs. In particular, we investigate self-stabilization in systems of n finite state agents in which a malicious scheduler selects an arbitrary sequence of pairwise interactions under a global fairness condition. We show a necessary and sufficient condition for self-stabilization. Specifically we show that functions without certain set-theoretic conditions are impossible to compute in a self-stabilizing manner. Our main contribution is in the converse, where we construct a self-stabilizing protocol for all other functions that meet this characterization. Our positive construction uses Dickson’s Lemma to develop the notion of the root set, a concept that turns out to fundamentally characterize self-stabilization in this model. We believe it may lend to characterizing self-stabilization in more general models as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18, 235–253 (2006)

    Google Scholar 

  2. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distrib. Comput. 20(4), 279–304 (2007)

    Article  Google Scholar 

  3. Angluin, D., Aspnes, J., Fischer, M., Jiang, H.: Self-stabilizing populationprotocols. ACM Trans. Auton. Adapt. Syst. 3 (2008)

    Google Scholar 

  4. Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Garbinato, B., Miranda, H., Rodrigues, L. (eds.) Middleware for Network Eccentric and Mobile Applications. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-89707-1_5

  5. Awerbuch, B., Ostrovsky, R.: Memory-efficient and self-stabilizing network RESET. In: PODC 1994, pp. 254–263 (1994)

    Google Scholar 

  6. Beauquier, J., Blanchard, P., Burman, J.: Self-stabilizing leader election in population protocols over arbitrary communication graphs. In: Baldoni, R., Nisse, N., van Steen, M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 38–52. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03850-6_4

    Chapter  Google Scholar 

  7. Beauquier, J., Burman, J., Clement, J., Kutten, S.: Brief announcement. In: PODC 2009. ACM Press (2009)

    Google Scholar 

  8. Beauquier, J., Burman, J., Kutten, S.: Making population protocols self-stabilizing. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 90–104. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05118-0_7

    Chapter  Google Scholar 

  9. Burman, J., Doty, D., Nowak, T., Severson, E.E., Xu, C.: Efficient self-stabilizing leader election in population protocols (2020)

    Google Scholar 

  10. Cai, S., Izumi, T., Wada, K.: How to prove impossibility under global fairness: on space complexity of self-stabilizing leader election on a population protocol model. Theor. Comput. Syst. 50, 433–445 (2012)

    Google Scholar 

  11. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical reaction networks. In: Condon, A., Harel, D., Kok, J., Salomaa, A., Winfree, E. (eds.) Algorithmic Bioprocesses, pp. 543–584. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88869-7_27

    Chapter  Google Scholar 

  12. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. Am. J. Math. 35(4), 413–422 (1913)

    Article  MathSciNet  Google Scholar 

  13. Dijkstra, E.: Self-stabilizing systems in spite of distributed control. Commun. ACM, 643–644 (1974)

    Google Scholar 

  14. Fischer, M., Jiang, H.: Self-stabilizing leader election in networks of finite-state anonymous agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 395–409. Springer, Heidelberg (2006). https://doi.org/10.1007/11945529_28

    Chapter  Google Scholar 

  15. Goldwasser, S., Ostrovsky, R., Scafuro, A., Sealfon, A.: Population stability: regulating size in the presence of an adversary. In: PODC 2018, pp. 397–406 (2018)

    Google Scholar 

  16. Izumi, T., Kinpara, K., Izumi, T., Wada, K.: Space-efficient self-stabilizing counting population protocols on mobile sensor networks. Theoret. Comput. Sci. 552, 99–108 (2014)

    Article  MathSciNet  Google Scholar 

  17. Mathur, S., Ostrovsky, R.: A combinatorial characterization of self-stabilizing population protocols. arXiv:2010.03869 (2020)

  18. Mayer, A., Ofek, Y., Ostrovsky, R., Yung, M.: Self-stabilizing symmetry breaking in constant-space (extended abstract). In: Proceedings 24th ACM Symposium on Theory of Computing, pp. 667–678 (1992)

    Google Scholar 

  19. Sudo, Y., Ooshita, F., Kakugawa, H., Masuzawa, T., Datta, A.K., Larmore, L.L.: Loosely-Stabilizing Leader Election with Polylogarithmic Convergence Time. In: OPODIS 2018, vol. 125, pp. 30:1–30:16 (2018)

    Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their helpful comments. This work is supported in part by DARPA under Cooperative Agreement No: HR0011-20-2-0025, NSF-BSF Grant 1619348, US-Israel BSF grant 2012366, Google Faculty Award, JP Morgan Faculty Award, IBM Faculty Research Award, Xerox Faculty Research Award, OKAWA Foundation Research Award, B. John Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin Corporation Research Award. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of DARPA, the Department of Defense, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes not withstanding any copyright annotation therein.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaan Mathur or Rafail Ostrovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mathur, S., Ostrovsky, R. (2020). A Combinatorial Characterization of Self-stabilizing Population Protocols. In: Devismes, S., Mittal, N. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2020. Lecture Notes in Computer Science(), vol 12514. Springer, Cham. https://doi.org/10.1007/978-3-030-64348-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64348-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64347-8

  • Online ISBN: 978-3-030-64348-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics