Skip to main content

Brief Announcement: TRIX: Low-Skew Pulse Propagation for Fault-Tolerant Hardware

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12514))

  • 254 Accesses

Abstract

We present a simple grid structure to use in a fault-tolerant clock propagation method and study it by means of simulation experiments. A key question is how well neighboring grid nodes are synchronized, even without faults. Our statistical approach provides substantial evidence that this system performs surprisingly well. In a grid of height H, the standard deviation of the delay seems to be \(O(H^{1/4})\) (\(\approx \)2.7 link delay uncertainties for \(H=2000\)) and the standard deviation of the skew to be \(o(\log \log H)\) (\(\approx \)0.77 link delay uncertainties for \(H=2000\)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chipana, R., Kastensmidt, F.L.: SET susceptibility analysis of clock tree and clock mesh topologies. In: ISVLSI, pp. 559–564 (2014)

    Google Scholar 

  2. Chipana, R., Kastensmidt, F.L., Tonfat, J., Reis, R., Guthaus, M.: SET susceptibility analysis in buffered tree clock distribution networks. In: RADECS, pp. 256–261 (2011)

    Google Scholar 

  3. Dolev, D., Függer, M., Lenzen, C., Perner, M., Schmid, U.: HEX: scaling honeycombs is easier than scaling clock trees. J. Comput. Syst. Sci. 82(5), 929–956 (2016)

    Article  MathSciNet  Google Scholar 

  4. Dolev, D., Halpern, J.Y., Strong, H.R.: On the possibility and impossibility of achieving clock synchronization. J. Comput. Syst. Sci. 32(2), 230–250 (1986)

    Article  MathSciNet  Google Scholar 

  5. Dolev, D., Függer, M., Lenzen, C., Schmid, U.: Fault-tolerant algorithms for tick-generation in asynchronous logic. J. ACM 61(5), 30:1–30:74 (2014)

    Article  Google Scholar 

  6. Lenzen, C., Rybicki, J.: Self-stabilising byzantine clock synchronisation is almost as easy as consensus. J. ACM 66(5), 32:1–32:56 (2019)

    Article  MathSciNet  Google Scholar 

  7. Lenzen, C., Wiederhake, B.: TRIX: Low-skew pulse propagation for fault-tolerant hardware (2020). https://arxiv.org/abs/2010.01415

  8. Malherbe, V., Gasiot, G., Clerc, S., Abouzeid, F., Autran, J.L., Roche, P.: Investigating the single-event-transient sensitivity of 65 nm clock trees with heavy ion irradiation and Monte-Carlo simulation. In: IRPS, pp. SE-3-1–SE-3-5 (2016)

    Google Scholar 

  9. Srikanth, T.K., Toueg, S.: Optimal clock synchronization. J. ACM 34(3), 626–645 (1987)

    Article  MathSciNet  Google Scholar 

  10. Wang, H.B., et al.: Single-event transient sensitivity evaluation of clock networks at 28-nm CMOS technology. IEEE Trans. Nucl. Sci. 63(1), 385–391 (2016)

    Article  Google Scholar 

  11. Welch, J.L., Lynch, N.A.: A new fault-tolerant algorithm for clock synchronization. Inf. Comput. 77(1), 1–36 (1988)

    Article  MathSciNet  Google Scholar 

  12. Xanthopoulos, T. (ed.): Clocking in Modern VLSI Systems. ICIR. Springer, Boston (2009). https://doi.org/10.1007/978-1-4419-0261-0

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Wiederhake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lenzen, C., Wiederhake, B. (2020). Brief Announcement: TRIX: Low-Skew Pulse Propagation for Fault-Tolerant Hardware. In: Devismes, S., Mittal, N. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2020. Lecture Notes in Computer Science(), vol 12514. Springer, Cham. https://doi.org/10.1007/978-3-030-64348-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64348-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64347-8

  • Online ISBN: 978-3-030-64348-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics