Skip to main content

REFINITY to Model and Prove Program Transformation Rules

  • Conference paper
  • First Online:
Programming Languages and Systems (APLAS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12470))

Included in the following conference series:

Abstract

is a workbench for modeling statement-level transformation rules on programs with the aim to formally verify their correctness. It is based on Abstract Execution, a verification framework for abstract programs with a high degree of proof automation, and interfaces with the program prover. We describe the user interface and functionality of , and illustrate its capabilities along the application to proving conditional correctness of a code refactoring rule.

This work was funded by the Hessian LOEWE initiative within the Software-Factory 4.0 project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Generally, proofs may require user interaction, especially when relying on incomplete theories like first-order arithmetic.

References

  1. Beckert, B., Klebanov, V., Weiß, B.: Dynamic logic for Java. Deductive Software Verification – The KeY Book. LNCS, vol. 10001, pp. 49–106. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6_3

    Chapter  Google Scholar 

  2. Ahrendt, W., Roth, A., Sasse, R.: Automatic validation of transformation rules for Java verification against a rewriting semantics. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 412–426. Springer, Heidelberg (2005). https://doi.org/10.1007/11591191_29

    Chapter  MATH  Google Scholar 

  3. Beckert, B., Ulbrich, M.: Trends in relational program verification. Principled Software Development, pp. 41–58. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98047-8_3

    Chapter  Google Scholar 

  4. Fowler, M.: Refactoring: Improving the Design of Existing Code. Object Technology Series. Addison-Wesley, Boston (1999)

    Google Scholar 

  5. Garrido, A., Meseguer, J.: Formal specification and verification of Java refactorings. In: Proceedings of the 6th SCAM, pp. 165–174. IEEE Computer Society (2006)

    Google Scholar 

  6. Godlin, B., Strichman, O.: Regression verification: proving the equivalence of similar programs. Softw. Test. Verif. Reliab. 23(3), 241–258 (2013)

    Article  Google Scholar 

  7. Kassios, I.T.: The dynamic frames theory. Formal Asp. Comput. 23(3), 267–288 (2011). https://doi.org/10.1007/s00165-010-0152-5

    Article  MathSciNet  MATH  Google Scholar 

  8. Kiefer, M., Klebanov, V., Ulbrich, M.: Relational program reasoning using compiler IR - combining static verification and dynamic analysis. J. Autom. Reasoning 60(3), 337–363 (2018). https://doi.org/10.1007/s10817-017-9433-5

    Article  MathSciNet  MATH  Google Scholar 

  9. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Programming. Springer, Heidelberg (2012)

    Google Scholar 

  10. Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameterized program equivalence. Proc. PLDI 2009, 327–337 (2009)

    Google Scholar 

  11. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: a language-agnostic semantic diff tool for imperative programs. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 712–717. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_54

    Chapter  Google Scholar 

  12. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (2009)

    Article  Google Scholar 

  13. Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Practical verification of peephole optimizations with alive. Commun. ACM 61(2), 84–91 (2018)

    Article  Google Scholar 

  14. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program synthesis. In: Proceedings of the 37th POPL, pp. 313–326 (2010)

    Google Scholar 

  15. Steinhöfel, D.: Abstract Execution: automatically proving infinitely many programs. Ph.D. thesis, TU Darmstadt, Department of Computer Science, Darmstadt, Germany (2020). http://tuprints.ulb.tu-darmstadt.de/8540/

  16. Steinhöfel, D., Hähnle, R.: Abstract Execution. In: Proceedings of the Third World Congress on Formal Methods - The Next 30 Years, (FM), pp. 319–336 (2019). https://doi.org/10.1007/978-3-030-30942-8_20

  17. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A., Owens, S., Norrish, M.: A new verified compiler backend for CakeML. In: Proceedings of the 21st ICFP. ACM (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Steinhöfel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Steinhöfel, D. (2020). REFINITY to Model and Prove Program Transformation Rules. In: Oliveira, B.C.d.S. (eds) Programming Languages and Systems. APLAS 2020. Lecture Notes in Computer Science(), vol 12470. Springer, Cham. https://doi.org/10.1007/978-3-030-64437-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64437-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64436-9

  • Online ISBN: 978-3-030-64437-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics