Skip to main content

P-FideNet: Plasmodium Falciparum Identification Neural Network

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12509))

Included in the following conference series:

Abstract

Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. The identification of the parasitized blood cells is a laborious and challenging task as it involves very complex and time consuming methods such as spotting the parasite in the blood and counting the number of the parasites. This examination can be arduous for large-scale diagnoses, resulting in poor quality. This paper presents a new Convolutional Neural Network (CNN) architecture named P-FideNet aimed at the detection of Malaria. The proposed CNN model can be used to solve image classification problems of blood cells infected or not by parasite X. This tool makes the process of analysis by the specialist faster and more accurate. Comparative tests were carried out with state-of-the-art works, and P-FideNet achieved 98.53% recall, 98.88% accuracy and 99% precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://lhncbc.nlm.nih.gov.

  2. 2.

    https://lhncbc.nlm.nih.gov.

  3. 3.

    http://www.vlfeat.org/matconvnet/.

References

  1. Chimieski, B.F., Fagundes, R.D.R.: Association and classification data mining algorithms comparison over medical datasets. J. Health Inform. 5(2), 44–51 (2013)

    Google Scholar 

  2. Das, D.K., Ghosh, M., Pal, M., Maiti, A.K., Chakraborty, C.: Machine learning approach for automated screening of malaria parasite using light microscopic images. Micron 45, 97–106 (2013)

    Article  Google Scholar 

  3. Doi, K.: Current status and future potential of computer-aided diagnosis in medical imaging. Br. J. Radiol. 78(suppl\_1), s3–s19 (2005)

    Google Scholar 

  4. Fatima, T., Farid, M.S.: Automatic detection of plasmodium parasites from microscopic blood images. J. Parasit. Dis. 44(1), 69–78 (2020). https://doi.org/10.1007/s12639-019-01163-x

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  7. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and 0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016)

  8. Janocha, K., Czarnecki, W.M.: On loss functions for deep neural networks in classification. arXiv preprint arXiv:1702.05659 (2017)

  9. Kashtriya, V., Doegar, A., Gupta, V., Kashtriya, P.: Identifying malaria infection in red blood cells using optimized step-increase convolutional neural network model 8, 813–818 (2019)

    Google Scholar 

  10. Liang, Z., et al.: CNN-based image analysis for malaria diagnosis. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 493–496. IEEE (2016)

    Google Scholar 

  11. Masud, M., et al.: Leveraging deep learning techniques for malaria parasite detection using mobile application. Wirel. Commun. Mob. Comput. 2020, 5–13 (2020)

    Google Scholar 

  12. World Health Organization, et al.: World malaria report 2014. Who, Geneva. Fecha de consulta 23, 247 (2018)

    Google Scholar 

  13. Pedrini, H., Schwartz, W.R.: Análise de imagens digitais: princípios, algoritmos e aplicações. Thomson Learning (2008)

    Google Scholar 

  14. Powers, D.: Evaluation: from precision, recall and f-factor to roc, informedness, markedness & correlation. Technical report SIE-07-001. School of Informatics and Engineering, Flinders University, Adelaide, Australia (2016)

    Google Scholar 

  15. Rahman, A., et al.: Improving malaria parasite detection from red blood cell using deep convolutional neural networks. arXiv preprint arXiv:1907.10418 (2019)

  16. Rajaraman, S., et al.: Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ 6, e4568 (2018)

    Article  Google Scholar 

  17. Rajaraman, S., Jaeger, S., Antani, S.K.: Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images. PeerJ 7, e6977 (2019)

    Article  Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  19. Warhurst, D., Williams, J.: ACP broadsheet no 148. July 1996. Laboratory diagnosis of malaria. J. Clin. Pathol. 49(7), 533 (1996)

    Article  Google Scholar 

  20. WHO: World malaria report 2019. World Health Organization (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cruz, D. et al. (2020). P-FideNet: Plasmodium Falciparum Identification Neural Network. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2020. Lecture Notes in Computer Science(), vol 12509. Springer, Cham. https://doi.org/10.1007/978-3-030-64556-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64556-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64555-7

  • Online ISBN: 978-3-030-64556-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics