Skip to main content

Depthwise Separable Convolutions and Variational Dropout within the context of YOLOv3

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12509))

Included in the following conference series:

  • 1639 Accesses

Abstract

Deep learning algorithms have demonstrated remarkable performance in many sectors and have become one of the main foundations of modern computer-vision solutions. However, these algorithms often impose prohibitive levels of memory and computational overhead, especially in resource-constrained environments. In this study, we combine the state-of-the-art object-detection model YOLOv3 with depthwise separable convolutions and variational dropout in an attempt to bridge the gap between the superior accuracy of convolutional neural networks and the limited access to computational resources. We propose three lightweight variants of YOLOv3 by replacing the original network’s standard convolutions with depthwise separable convolutions at different strategic locations within the network, and we evaluate their impacts on YOLOv3’s size, speed, and accuracy. We also explore variational dropout: a technique that finds individual and unbounded dropout rates for each neural network weight. Experiments on the PASCAL VOC benchmark dataset show promising results where variational dropout combined with the most efficient YOLOv3 variant lead to an extremely sparse solution that reduces 95% of the baseline network’s parameters at a relatively small drop of 3% in accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/YunYang1994/tensorflow-yolov3.

  2. 2.

    https://github.com/google-research/googleresearch/tree/master/state_of_sparsity/layers/variational_dropout.

  3. 3.

    https://colab.research.google.com/.

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  2. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  3. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision & Pattern Recognition, (CVPR 2014), pp. 580–587 (2014)

    Google Scholar 

  4. Girshick, R.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV 2015), pp. 1440–1448 (2015)

    Google Scholar 

  5. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  6. Liu, W., et al: Ssd: single shot multibox detector. Comput. Res. Repository, CoRR abs/1512.02325 (2016)

    Google Scholar 

  7. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), pp. 779–788 (2016)

    Google Scholar 

  8. Redmon, J., Farhadi, A.: Yolo9000: Better, faster, stronger. Comput. Res. Repository, CoRR abs/1612.08242 (2016)

    Google Scholar 

  9. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. Comput. Res. Repository, CoRR abs/1804.02767 (2018)

    Google Scholar 

  10. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (Voc) challenge. Inter. J. Comput. Vis. 88(2), 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4

    Article  Google Scholar 

  11. Lin, Tsung-Yi., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  12. Molchanov, D., Ashukha, A., Vetrov, D.: Variational dropout sparsifies deep neural networks. Comput. Res. Repository, CoRR abs/1701.05369 (2017)

    Google Scholar 

  13. Salem, C., Azar, D., Tokajian, S.: An image processing and genetic algorithm-based approach for the detection of Melanoma in patients. Meth. Inf. Med. (2018). https://doi.org/10.3412/ME17-01-0061

    Article  Google Scholar 

  14. Abu-Khzam, F.N., Li, S., Markarian, C., der auf Heide, F.M., Podlipyan, P.: Efficient parallel algorithms for parameterized problems. Theor. Comput. Sci. 786, 2–12 (2019)

    Article  MathSciNet  Google Scholar 

  15. Abu-Khzam, F.N., Markarian, C., auf der Heide, F.M., Schubert, M.: Approximation and heuristic algorithms for computing backbones in asymmetric Ad-hoc networks. Theor. Comput. Syst. 62(8), 1673–1689 (2018). https://doi.org/10.1007/s00224-017-9836-z

    Article  MathSciNet  MATH  Google Scholar 

  16. Abu-Khzam, F.N., Daudjee, K., Mouawad, A.E., Nishimura, N.: On scalable parallel recursive backtracking. J. Parallel Distrib. Computing 84, 65–75 (2015)

    Article  Google Scholar 

  17. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. Comput. Res. Repository, CoRR abs/1704.04861 (2017)

    Google Scholar 

  18. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. Comput. Res. Repository, CoRR abs/1207.0580 (2012)

    Google Scholar 

  19. Kingma, D.P., Salimans, T., Welling, M.: Variational dropout and the local reparameterization trick. Comput. Res. Repository, CoRR abs/1506.02557 (2015)

    Google Scholar 

  20. Wang S., Manning C.: Fast dropout training. In: International Conference on Machine Learning (ICML 2013), pp. 118–126 (2013)

    Google Scholar 

  21. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. Comput. Res. Repository, CoRR abs/1312.6114 (2014)

    Google Scholar 

  22. Rezende, D., Mohamed, S., Wierstra, D.: Stochastic Backpropagation and approximate inference in deep generative models. In: International Conference on Machine Learning, vol. 32, pp. II-1278–II-1286 (2014)

    Google Scholar 

  23. Mao, Q., Sun, H., Liu, Y., Jia, R.: Mini-YOLOv3: real-time object detector for embedded applications. IEEE Access 7, 133529–133538 (2019)

    Article  Google Scholar 

  24. Li, Y., Han, Z., Xu, H., Liu, L., Li, X., Zhang, K.: YOLOv3-lite: a lightweight crack detection network for aircraft structure based on depthwise separable convolutions. Appl. Sci. 9(18), 3781 (2019)

    Article  Google Scholar 

  25. Zhang, P., Zhong, Y., and Li, X.: SlimYolov3: narrower, faster and better for real-time UAV applications. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW 2019), pp. 37–45 (2019)

    Google Scholar 

  26. Zhu, P., et al.: VisDrone-VDT2018: the vision meets drone video detection and tracking challenge results. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 496–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_29

    Chapter  Google Scholar 

  27. Ebrahimi, D., Sharafeddine, S., Ho, P., Assi, C.: Autonomous UAV trajectory for localizing ground Objects: a Reinforcement Learning approach. IEEE Trans. on Mobile Computing (2020). https://doi.org/10.1109/TMC.2020.2966989

    Article  Google Scholar 

  28. Sang, D.V., Hung, D.V.: YOLOv3-VD: a sparse network for vehicle detection using variational dropout. In: International Symposium on Information and Communication Technology (SoICT 2019), pp. 280–284 (2019)

    Google Scholar 

  29. Gale, T., Elsen, E., Hooker, S.: The State of sparsity in deep neural networks. Comput. Res. Repository, CoRR abs/1902.09574 (2019)

    Google Scholar 

  30. Bochkovskiy, A., Wang, C. Y., Liao, H.Y.: YOLOv4: optimal speed and accuracy of object detection. Comput. Res. Repository, CoRR abs/2004.10934 (2020)

    Google Scholar 

  31. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. Comput. Res. Repository, CoRR abs/1510.00149 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe Tekli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakar, J., Sobbahi, R.A., Tekli, J. (2020). Depthwise Separable Convolutions and Variational Dropout within the context of YOLOv3. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2020. Lecture Notes in Computer Science(), vol 12509. Springer, Cham. https://doi.org/10.1007/978-3-030-64556-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64556-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64555-7

  • Online ISBN: 978-3-030-64556-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics