Skip to main content

DeepTKAClassifier: Brand Classification of Total Knee Arthroplasty Implants Using Explainable Deep Convolutional Neural Networks

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2020)

Abstract

Total knee arthroplasty (TKA) is one of the most successful surgical procedures worldwide. It improves quality of life, mobility, and functionality for the vast majority of patients. However, a TKA surgery may fail over time for several reasons, thus it requires a revision arthroplasty surgery. Identifying TKA implants is a critical consideration in preoperative planning of revision surgery. This study aims to develop, train, and validate deep convolutional neural network models to precisely classify four widely-used TKA implants based on only plain knee radiographs. Using 9,052 computationally annotated knee radiographs, we achieved weighted average precision, recall, and F1-score of 0.97, 0.97, and 0.97, respectively, with Cohen Kappa of 0.96.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kurtz, S.M., Ong, K.L., Lau, E., Bozic, K.J.: Impact of the economic downturn on total joint replacement demand in the United States: updated projections to 2021. JBJS 96(8), 624–30 (2014)

    Article  Google Scholar 

  2. Kremers, H.M., et al.: Prevalence of total hip and knee replacement in the United States. J. Bone Joint Surg. Am. Vol. 97(17), 1386 (2015)

    Article  Google Scholar 

  3. Losina, E., et al.: Cost-effectiveness of total knee arthroplasty in the United States: patient risk and hospital volume. Arch. Intern. Med. 169(12), 1113–21 (2009)

    Article  Google Scholar 

  4. Kremers, H.M., et al.: Comparative survivorship of different tibial designs in primary total knee arthroplasty. J. Bone Joint Surg. Am. 96(14), e121 (2014)

    Article  Google Scholar 

  5. Price, A.J., et al.: Knee replacement. Lancet 392(10158), 1672–1682 (2018)

    Article  Google Scholar 

  6. Bozic, K.J., et al.: The epidemiology of revision total knee arthroplasty in the United States. Clin. Orthop. Relat. Res.® 468(1), 45–51 (2010)

    Article  MathSciNet  Google Scholar 

  7. Kurtz, S., Ong, K., Lau, E., Mowat, F., Halpern, M.: Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. Jbjs 89(4), 780–5 (2007)

    Article  Google Scholar 

  8. Wilson, N.A., Jehn, M., York, S., Davis III, C.M.: Revision total hip and knee arthroplasty implant identification: implications for use of unique device identification 2012 AAHKS member survey results. J. Arthroplasty 29(2), 251–5 (2014)

    Article  Google Scholar 

  9. Steiner, C., Andrews, R., Barrett, M., Weiss, A.: HCUP projections: mobility/orthopedic procedures 2003 to 2012. US agency for healthcare research and quality (2012)

    Google Scholar 

  10. Scuderi, G.R.: Revision total knee arthroplasty: how much constraint is enough? Clin. Orthop. Relat. Res.® 392, 300–305 (2001)

    Article  Google Scholar 

  11. Paul, H.Y., et al.: Automated detection & classification of knee arthroplasty using deep learning. Knee 27, 535–542 (2019)

    Google Scholar 

  12. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  13. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  14. Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 472–480 (2017)

    Google Scholar 

  15. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122, 23 November 2015

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  17. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1), 37–46 (1960)

    Article  Google Scholar 

  18. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  19. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence, 12 February 2017

    Google Scholar 

  20. Strubell, E., Verga, P., Belanger, D., McCallum, A.: Fast and accurate entity recognition with iterated dilated convolutions. arXiv preprint arXiv:1702.02098, 7 February 2017

  21. Zhou, L., Zhang, C., Wu, M.: D-LinkNet: LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. In: CVPR Workshops, 18 June 2018, pp. 182–186 (2018)

    Google Scholar 

  22. Wang, Y., Hu, S., Wang, G., Chen, C., Pan, Z.: Multi-scale dilated convolution of convolutional neural network for crowd counting. Multimed. Tools Appl. 79, 1057–1073 (2019). https://doi.org/10.1007/s11042-019-08208-6

    Article  Google Scholar 

  23. Liu, S., Xu, H., Liu, Y., Xie, H.: Improving brain tumor segmentation with dilated pseudo-3D convolution and multi-direction fusion. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11961, pp. 727–738. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37731-1_59

    Chapter  Google Scholar 

  24. Wang, B., Zhang, X., Zhou, X., Li, J.: A gated dilated convolution with attention model for clinical cloze-style reading comprehension. Int. J. Environ. Res. Public Health 17(4), 1323 (2020)

    Article  Google Scholar 

  25. Rafi A.M., et al.: Application of DenseNet in camera model identification and post-processing detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 19–28 (2019)

    Google Scholar 

  26. Chen, X., Du, J., Zhang, H.: Lipreading with DenseNet and resBi-LSTM. SIViP 14(5), 981–989 (2020). https://doi.org/10.1007/s11760-019-01630-1

    Article  Google Scholar 

  27. Chen, Y., Christodoulou, A.G., Zhou, Z., Shi, F., Xie, Y., Li, D.: MRI super-resolution with GAN and 3D multi-level DenseNet: smaller, faster, and better. arXiv preprint arXiv:2003.01217, 2 March 2020

  28. Zhang, X., Pan, W., Bontozoglou, C., Chirikhina, E., Chen, D., Xiao, P.: Skin capacitive imaging analysis using deep learning GoogLeNet. In: Advances in Intelligent Systems and Computing, 16 July 2020

    Google Scholar 

  29. Balagourouchetty, L., Pragatheeswaran, J.K., Pottakkat, B., Ramkumar, G.: GoogLeNet based ensemble FCNet classifier for focal liver lesion diagnosis. IEEE J. Biomed. Health Inform. 24(6), 1686–1694 (2020). https://ieeexplore.ieee.org/abstract/document/8845663

  30. Kim, J.H., Seo, S.Y., Song, C.G., Kim, K.S.: Assessment of electrocardiogram rhythms by GoogLeNet deep neural network architecture. J. Healthc. Eng. 2019, 1–10 (2019). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6512052/

    Google Scholar 

  31. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 1(42), 60–88 (2017)

    Article  Google Scholar 

  32. Xu, Y., et al.: Deep learning of feature representation with multiple instance learning for medical image analysis. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1626–1630. IEEE, 4 May 2014

    Google Scholar 

  33. López-Linares Román, K., García Ocaña, M.I., Lete Urzelai, N., González Ballester, M.Á., Macía Oliver, I.: Medical image segmentation using deep learning. In: Chen, Y.-W., Jain, L.C. (eds.) Deep Learning in Healthcare. ISRL, vol. 171, pp. 17–31. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32606-7_2

    Chapter  Google Scholar 

  34. Tafti, A.P., Bashiri, F.S., LaRose, E., Peissig, P.: Diagnostic classification of lung CT images using deep 3D multi-scale convolutional neural network. In: 2018 IEEE International Conference on Healthcare Informatics (ICHI), pp. 412–414. IEEE, 4 June 2018

    Google Scholar 

  35. Abbas, A., Abdelsamea, M.M., Gaber, M.M.: Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. arXiv preprint arXiv:2003.13815, 26 March 2020

Download references

Acknowledgment

This work was supported by the National Institutes of Health (NIH) grants R01AR73147 and P30AR76312.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi Yan , Taghi Ramazanian , Hilal Maradit Kremers or Ahmad P. Tafti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, S. et al. (2020). DeepTKAClassifier: Brand Classification of Total Knee Arthroplasty Implants Using Explainable Deep Convolutional Neural Networks. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2020. Lecture Notes in Computer Science(), vol 12510. Springer, Cham. https://doi.org/10.1007/978-3-030-64559-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64559-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64558-8

  • Online ISBN: 978-3-030-64559-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics