Skip to main content

Simple Camera-to-2D-LiDAR Calibration Method for General Use

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12510))

Included in the following conference series:

Abstract

As systems that utilize computer vision move into the public domain, methods of calibration need to become easier to use. Though multi-plane LiDAR systems have proven to be useful for vehicles and large robotic platforms, many smaller platforms and low-cost solutions still require 2D LiDAR combined with RGB cameras. Current methods of calibrating these sensors make assumptions about camera and laser placement and/or require complex calibration routines. In this paper we propose a new method of feature correspondence in the two sensors and an optimization method capable of using a calibration target with unknown lengths in its geometry. Our system is designed with an inexperienced layperson as the intended user, which has led us to remove as many assumptions about both the target and laser as possible. We show that our system is capable of calibrating the 2-sensor system from a single sample in configurations other methods are unable to handle.

This work has been supported by NSF Awards #IIS-1719027 and #IIS-1757929.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad Yousef, K., Mohd, B., Al-Widyan, K., Hayajneh, T.: Extrinsic calibration of camera and 2D laser sensors without overlap. Sensors 17(10), 2346 (2017). https://doi.org/10.3390/s17102346. http://dx.doi.org/10.3390/s17102346

    Article  Google Scholar 

  2. Bradski, G.: The OpenCV Library. Dr. Dobb’s J. Softw. Tools (2000)

    Google Scholar 

  3. Dong, W., Isler, V.: A novel method for the extrinsic calibration of a 2D laser rangefinder and a camera. IEEE Sens. J. 18(10), 4200–4211 (2018)

    Article  Google Scholar 

  4. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  5. Gomez-Ojeda, R., Briales, J., Fernandez-Moral, E., Gonzalez-Jimenez, J.: Extrinsic calibration of a 2D laser-rangefinder and a camera based on scene corners. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 3611–3616 (2015)

    Google Scholar 

  6. Hartley, R.I., Trumpf, J., Dai, Y., Li, H.: Rotation averaging. Int. J. Comput. Vis. 103, 267–305 (2012)

    Article  MathSciNet  Google Scholar 

  7. Hillemann, M., Jutzi, B.: Ucalmicel - unified intrinsic and extrinsic calibration of a multi-camera-system and a laserscanner. ISPRS Ann. Photogr. Remote Sens. Spat. Inf. Sci. IV–2/W3, 17–24 (2017). https://doi.org/10.5194/isprs-annals-IV-2-W3-17-2017

    Article  Google Scholar 

  8. Hu, Z., Li, Y., Li, N., Zhao, B.: Extrinsic calibration of 2-D laser rangefinder and camera from single shot based on minimal solution. IEEE Trans. Instrum. Meas. 65(4), 915–929 (2016)

    Article  Google Scholar 

  9. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, pp. 2149–2154, September 2004

    Google Scholar 

  10. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: An accurate o(n) solution to the PnP problem. Int. J. Comput. Vis. 81, 155–166 (2009). https://doi.org/10.1007/s11263-008-0152-6. http://infoscience.epfl.ch/record/160138

    Article  Google Scholar 

  11. Li, N., Hu, Z., Zhao, B.: Flexible extrinsic calibration of a camera and a two-dimensional laser rangefinder with a folding pattern. Appl. Opt. 55, 2270 (2016). https://doi.org/10.1364/AO.55.002270

    Article  Google Scholar 

  12. Li, Y., Hu, Z., Li, Z., Cai, Y., Sun, S., Zhou, J.: A single-shot pose estimation approach for a 2D laser rangefinder. Meas. Sci. Technol. 31(2), 025105 (2019). https://doi.org/10.1088/1361-6501/ab455a

    Article  Google Scholar 

  13. Moré, J.J.: The Levenberg-Marquardt algorithm: implementation and theory. In: Watson, G.A. (ed.) Numerical Analysis. LNM, vol. 630, pp. 105–116. Springer, Heidelberg (1978). https://doi.org/10.1007/BFb0067700

    Chapter  Google Scholar 

  14. Tian, Z., Huang, Y., Zhu, F., Ma, Y.: The extrinsic calibration of area-scan camera and 2D laser rangefinder (LRF) using checkerboard trihedron. IEEE Access 8, 36166–36179 (2020)

    Article  Google Scholar 

  15. Tieleman, T., Hinton, G.: Lecture 6.5-RmsProp: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4, 26–31 (2012)

    Google Scholar 

  16. Vasconcelos, F., Barreto, J.P., Nunes, U.: A minimal solution for the extrinsic calibration of a camera and a laser-rangefinder. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2097–2107 (2012). https://doi.org/10.1109/TPAMI.2012.18

    Article  Google Scholar 

  17. Gao, X.-S., Hou, X.-R., Tang, J., Cheng, H.-F.: Complete solution classification for the perspective-three-point problem. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 930–943 (2003)

    Article  Google Scholar 

  18. Zhou, L.: A new minimal solution for the extrinsic calibration of a 2D lidar and a camera using three plane-line correspondences. IEEE Sens. J. 14(2), 442–454 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew H. Palmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Palmer, A.H., Peterson, C., Blankenburg, J., Feil-Seifer, D., Nicolescu, M. (2020). Simple Camera-to-2D-LiDAR Calibration Method for General Use. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2020. Lecture Notes in Computer Science(), vol 12510. Springer, Cham. https://doi.org/10.1007/978-3-030-64559-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64559-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64558-8

  • Online ISBN: 978-3-030-64559-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics