Skip to main content

Automated Classification of Parkinson’s Disease Using Diffusion Tensor Imaging Data

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12510))

Included in the following conference series:

Abstract

Parkinson’s Disease (PD) is one of the most common neurological disorders in the world, affecting over 6 million people globally. In recent years, Diffusion Tensor Imaging (DTI) biomarkers have been established as one of the leading techniques to help diagnose the disease. However, identifying patterns and deducing even preliminary results require a neurologist to automatically analyze the scan. In this paper, we propose a Machine Learning (ML) based algorithm that can analyze DTI data and predict if the person has PD. We were able to obtain a classification accuracy of 80% and an F1 score of 0.833 using our approach. The method proposed is expected to reduce the number of misdiagnosis by assisting the neurologists in making a decision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. NIfTI: Neuroimaging informatics technology initiative. https://nifti.nimh.nih.gov/. Accessed 30 Sept 2019

  2. Andersson, J.L., Sotiropoulos, S.N.: Non-parametric representation and prediction of single-and multi-shell diffusion-weighted MRI data using gaussian processes. Neuroimage 122, 166–176 (2015)

    Article  Google Scholar 

  3. Andersson, J.L., Sotiropoulos, S.N.: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078 (2016)

    Article  Google Scholar 

  4. Atkinson-Clement, C., Pinto, S., Eusebio, A., Coulon, O.: Diffusion tensor imaging in Parkinson’s disease: review and meta-analysis. NeuroImage Clin. 16, 98–110 (2017)

    Article  Google Scholar 

  5. Banerjee, M., Okun, M.S., Vaillancourt, D.E., Vemuri, B.C.: A method for automated classification of Parkinson’s disease diagnosis using an ensemble average propagator template brain map estimated from diffusion MRI. PloS One 11(6), e0155764 (2016)

    Article  Google Scholar 

  6. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures (2013)

    Google Scholar 

  7. Bodammer, N., Kaufmann, J., Kanowski, M., Tempelmann, C.: Eddy current correction in diffusion-weighted imaging using pairs of images acquired with opposite diffusion gradient polarity. Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 51(1), 188–193 (2004)

    Article  Google Scholar 

  8. Bopp, M.H., Zöllner, R., Jansen, A., Dietsche, B., Krug, A., Kircher, T.T.: White matter integrity and symptom dimensions of schizophrenia: a diffusion tensor imaging study. Schizophrenia Res. 184, 59–68 (2017)

    Article  Google Scholar 

  9. for Brain Imaging MC: MRIcroGL. https://www.mccauslandcenter.sc.edu/mricrogl/home. Accessed 30 Sept 2019

  10. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)

    Google Scholar 

  11. Du, G., et al.: Imaging nigral pathology and clinical progression in Parkinson’s disease. Mov. Disorders 27(13), 1636–1643 (2012)

    Article  Google Scholar 

  12. Elster, A.D.: DTI. http://mriquestions.com/dti-tensor-imaging.html. Accessed 30 Sept 2019

  13. Haller, S., Badoud, S., Nguyen, D., Garibotto, V., Lovblad, K., Burkhard, P.: Individual detection of patients with Parkinson disease using support vector machine analysis of diffusion tensor imaging data: initial results. Am. J. Neuroradiol. 33(11), 2123–2128 (2012)

    Article  Google Scholar 

  14. Holmes, G., Donkin, A., Witten, I.H.: Weka: a machine learning workbench (1994)

    Google Scholar 

  15. Horning, N.: Introduction to decision trees and random forests. Am. Mus. Nat. Hist 2, 1–27 (2013)

    Google Scholar 

  16. Jankovic, J.: Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79(4), 368–376 (2008)

    Article  Google Scholar 

  17. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal. 6(5), 429–449 (2002)

    Article  Google Scholar 

  18. Joachims, T.: Making large-scale SVM learning practical. Advances in Kernel methods-support vector learning (1999). http://svmlight.joachims.org/

  19. Joachims, T.: Training linear SVMs in linear time. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 217–226. ACM (2006)

    Google Scholar 

  20. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. R. Soc.: Math. Phys. Eng. Sci. 374(2065), 20150202 (2016)

    Article  MathSciNet  Google Scholar 

  21. Kim, H.J., et al.: Alterations of mean diffusivity in brain white matter and deep gray matter in Parkinson’s disease. Neurosci. Lett. 550, 64–68 (2013)

    Article  Google Scholar 

  22. Kingsley, P.B.: Introduction to diffusion tensor imaging mathematics: part i. Tensors, rotations, and eigenvectors. Concepts Magn. Reson. Part A 28(2), 101–122 (2006)

    Article  Google Scholar 

  23. Klein, G.: Blinded by data (2016). https://www.edge.org/response-detail/26692. Accessed: 30 Sept 2019

  24. Knossalla, F., et al.: High-resolution diffusion tensor-imaging indicates asymmetric microstructural disorganization within substantia nigra in early Parkinson’s disease. J. Clin. Neurosci. 50, 199–202 (2018)

    Article  Google Scholar 

  25. Larvie, M., Fischl, B.: Volumetric and fiber-tracing MRI methods for gray and white matter. In: Handbook of Clinical Neurology, vol. 135, pp. 39–60. Elsevier (2016)

    Google Scholar 

  26. Li, X., Morgan, P.S., Ashburner, J., Smith, J., Rorden, C.: The first step for neuroimaging data analysis: DICOM to NIfTI conversion. J. Neurosci. Methods 264, 47–56 (2016)

    Article  Google Scholar 

  27. Liu, L., et al.: Detecting dopaminergic neuronal degeneration using diffusion tensor imaging in a rotenone-induced rat model of Parkinson’s disease: fractional anisotropy and mean diffusivity values. Neural Regener. Res. 12(9), 1485 (2017)

    Article  Google Scholar 

  28. Marek, K., et al.: The Parkinson progression marker initiative (PPMI). Progr. Neurobiol. 95(4), 629–635 (2011)

    Article  Google Scholar 

  29. Digital Imaging and Communications in Medicine (DICOM) Standard: Standard, National Electrical Manufacturers Association, Rosslyn, VA, USA (2019). available free at http://medical.nema.org/

  30. Papadakis, N.G., Xing, D., Huang, C.L.H., Hall, L.D., Carpenter, T.A.: A comparative study of acquisition schemes for diffusion tensor imaging using MRI. J. Magn. Reson. 137(1), 67–82 (1999)

    Article  Google Scholar 

  31. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Prodoehl, J., et al.: Diffusion tensor imaging of Parkinson’s disease, a typical parkinsonism, and essential tremor. Mov. Disorders, 28(13), 1816–1822 (2013). https://doi.org/10.1002/mds.25491. https://onlinelibrary.wiley.com/doi/abs/10.1002/mds.25491

  33. Rajagopalan, V., et al.: A basic introduction to diffusion tensor imaging mathematics and image processing steps. Brain Disord. Ther. 6(229), 2 (2017)

    Google Scholar 

  34. Schwarz, S.T., Afzal, M., Morgan, P.S., Bajaj, N., Gowland, P.A., Auer, D.P.: The ‘swallow tail’ appearance of the healthy nigrosome-a new accurate test of Parkinson’s disease: a case-control and retrospective cross-sectional MRI study at 3T. PloS One 9(4), e93814 (2014)

    Article  Google Scholar 

  35. Sivakumar, R., Quinn, S.: Parkinson’s classification and feature extraction from diffusion tensor images (2019)

    Google Scholar 

  36. Smith, S.M.: Fast robust automated brain extraction. Human Brain Mapp. 17(3), 143–155 (2002)

    Article  Google Scholar 

  37. Soares, J., Marques, P., Alves, V., Sousa, N.: A Hitchhiker’s guide to diffusion tensor imaging. Front. Neurosci. 7, 31 (2013)

    Article  Google Scholar 

  38. Tu, M.C., et al.: Effectiveness of diffusion tensor imaging in differentiating early-stage subcortical ischemic vascular disease, Alzheimer’s disease and normal ageing. PloS One 12(4), e0175143 (2017)

    Article  Google Scholar 

  39. Vaillancourt, D., et al.: High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 72(16), 1378–1384 (2009)

    Article  Google Scholar 

  40. Wissner-Gross, A.: Datasets over algorithms (2016). https://www.edge.org/response-detail/26587. Accessed 30 Sept 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsh Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, H., Soltaninejad, S., Cheng, I. (2020). Automated Classification of Parkinson’s Disease Using Diffusion Tensor Imaging Data. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2020. Lecture Notes in Computer Science(), vol 12510. Springer, Cham. https://doi.org/10.1007/978-3-030-64559-5_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64559-5_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64558-8

  • Online ISBN: 978-3-030-64559-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics