Abstract
Parkinson’s Disease (PD) is one of the most common neurological disorders in the world, affecting over 6 million people globally. In recent years, Diffusion Tensor Imaging (DTI) biomarkers have been established as one of the leading techniques to help diagnose the disease. However, identifying patterns and deducing even preliminary results require a neurologist to automatically analyze the scan. In this paper, we propose a Machine Learning (ML) based algorithm that can analyze DTI data and predict if the person has PD. We were able to obtain a classification accuracy of 80% and an F1 score of 0.833 using our approach. The method proposed is expected to reduce the number of misdiagnosis by assisting the neurologists in making a decision.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
NIfTI: Neuroimaging informatics technology initiative. https://nifti.nimh.nih.gov/. Accessed 30 Sept 2019
Andersson, J.L., Sotiropoulos, S.N.: Non-parametric representation and prediction of single-and multi-shell diffusion-weighted MRI data using gaussian processes. Neuroimage 122, 166–176 (2015)
Andersson, J.L., Sotiropoulos, S.N.: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078 (2016)
Atkinson-Clement, C., Pinto, S., Eusebio, A., Coulon, O.: Diffusion tensor imaging in Parkinson’s disease: review and meta-analysis. NeuroImage Clin. 16, 98–110 (2017)
Banerjee, M., Okun, M.S., Vaillancourt, D.E., Vemuri, B.C.: A method for automated classification of Parkinson’s disease diagnosis using an ensemble average propagator template brain map estimated from diffusion MRI. PloS One 11(6), e0155764 (2016)
Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures (2013)
Bodammer, N., Kaufmann, J., Kanowski, M., Tempelmann, C.: Eddy current correction in diffusion-weighted imaging using pairs of images acquired with opposite diffusion gradient polarity. Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 51(1), 188–193 (2004)
Bopp, M.H., Zöllner, R., Jansen, A., Dietsche, B., Krug, A., Kircher, T.T.: White matter integrity and symptom dimensions of schizophrenia: a diffusion tensor imaging study. Schizophrenia Res. 184, 59–68 (2017)
for Brain Imaging MC: MRIcroGL. https://www.mccauslandcenter.sc.edu/mricrogl/home. Accessed 30 Sept 2019
Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)
Du, G., et al.: Imaging nigral pathology and clinical progression in Parkinson’s disease. Mov. Disorders 27(13), 1636–1643 (2012)
Elster, A.D.: DTI. http://mriquestions.com/dti-tensor-imaging.html. Accessed 30 Sept 2019
Haller, S., Badoud, S., Nguyen, D., Garibotto, V., Lovblad, K., Burkhard, P.: Individual detection of patients with Parkinson disease using support vector machine analysis of diffusion tensor imaging data: initial results. Am. J. Neuroradiol. 33(11), 2123–2128 (2012)
Holmes, G., Donkin, A., Witten, I.H.: Weka: a machine learning workbench (1994)
Horning, N.: Introduction to decision trees and random forests. Am. Mus. Nat. Hist 2, 1–27 (2013)
Jankovic, J.: Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79(4), 368–376 (2008)
Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal. 6(5), 429–449 (2002)
Joachims, T.: Making large-scale SVM learning practical. Advances in Kernel methods-support vector learning (1999). http://svmlight.joachims.org/
Joachims, T.: Training linear SVMs in linear time. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 217–226. ACM (2006)
Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. R. Soc.: Math. Phys. Eng. Sci. 374(2065), 20150202 (2016)
Kim, H.J., et al.: Alterations of mean diffusivity in brain white matter and deep gray matter in Parkinson’s disease. Neurosci. Lett. 550, 64–68 (2013)
Kingsley, P.B.: Introduction to diffusion tensor imaging mathematics: part i. Tensors, rotations, and eigenvectors. Concepts Magn. Reson. Part A 28(2), 101–122 (2006)
Klein, G.: Blinded by data (2016). https://www.edge.org/response-detail/26692. Accessed: 30 Sept 2019
Knossalla, F., et al.: High-resolution diffusion tensor-imaging indicates asymmetric microstructural disorganization within substantia nigra in early Parkinson’s disease. J. Clin. Neurosci. 50, 199–202 (2018)
Larvie, M., Fischl, B.: Volumetric and fiber-tracing MRI methods for gray and white matter. In: Handbook of Clinical Neurology, vol. 135, pp. 39–60. Elsevier (2016)
Li, X., Morgan, P.S., Ashburner, J., Smith, J., Rorden, C.: The first step for neuroimaging data analysis: DICOM to NIfTI conversion. J. Neurosci. Methods 264, 47–56 (2016)
Liu, L., et al.: Detecting dopaminergic neuronal degeneration using diffusion tensor imaging in a rotenone-induced rat model of Parkinson’s disease: fractional anisotropy and mean diffusivity values. Neural Regener. Res. 12(9), 1485 (2017)
Marek, K., et al.: The Parkinson progression marker initiative (PPMI). Progr. Neurobiol. 95(4), 629–635 (2011)
Digital Imaging and Communications in Medicine (DICOM) Standard: Standard, National Electrical Manufacturers Association, Rosslyn, VA, USA (2019). available free at http://medical.nema.org/
Papadakis, N.G., Xing, D., Huang, C.L.H., Hall, L.D., Carpenter, T.A.: A comparative study of acquisition schemes for diffusion tensor imaging using MRI. J. Magn. Reson. 137(1), 67–82 (1999)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Prodoehl, J., et al.: Diffusion tensor imaging of Parkinson’s disease, a typical parkinsonism, and essential tremor. Mov. Disorders, 28(13), 1816–1822 (2013). https://doi.org/10.1002/mds.25491. https://onlinelibrary.wiley.com/doi/abs/10.1002/mds.25491
Rajagopalan, V., et al.: A basic introduction to diffusion tensor imaging mathematics and image processing steps. Brain Disord. Ther. 6(229), 2 (2017)
Schwarz, S.T., Afzal, M., Morgan, P.S., Bajaj, N., Gowland, P.A., Auer, D.P.: The ‘swallow tail’ appearance of the healthy nigrosome-a new accurate test of Parkinson’s disease: a case-control and retrospective cross-sectional MRI study at 3T. PloS One 9(4), e93814 (2014)
Sivakumar, R., Quinn, S.: Parkinson’s classification and feature extraction from diffusion tensor images (2019)
Smith, S.M.: Fast robust automated brain extraction. Human Brain Mapp. 17(3), 143–155 (2002)
Soares, J., Marques, P., Alves, V., Sousa, N.: A Hitchhiker’s guide to diffusion tensor imaging. Front. Neurosci. 7, 31 (2013)
Tu, M.C., et al.: Effectiveness of diffusion tensor imaging in differentiating early-stage subcortical ischemic vascular disease, Alzheimer’s disease and normal ageing. PloS One 12(4), e0175143 (2017)
Vaillancourt, D., et al.: High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 72(16), 1378–1384 (2009)
Wissner-Gross, A.: Datasets over algorithms (2016). https://www.edge.org/response-detail/26587. Accessed 30 Sept 2019
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Sharma, H., Soltaninejad, S., Cheng, I. (2020). Automated Classification of Parkinson’s Disease Using Diffusion Tensor Imaging Data. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2020. Lecture Notes in Computer Science(), vol 12510. Springer, Cham. https://doi.org/10.1007/978-3-030-64559-5_52
Download citation
DOI: https://doi.org/10.1007/978-3-030-64559-5_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-64558-8
Online ISBN: 978-3-030-64559-5
eBook Packages: Computer ScienceComputer Science (R0)