Skip to main content

Multi-parameter Regression of Photovoltaic Systems using Selection of Variables with the Method: Recursive Feature Elimination for Ridge, Lasso and Bayes

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2020)

Abstract

The research focuses on the application of regularization techniques in a multiparameter linear regression model to predict the DC voltage levels of a photovoltaic system from 14 variables. Two predictions were made, in the first prediction, all the variables were taken, 14 independent variable and one dependent variable; Shrinkage Regularization types were applied, as a variable selection method. In the second prediction we propose the use of semiautomatic methods, we used Recursive Feature Elimination (RFE) as a variable selection method and to obtained results. We applied the following Shrinkage regularization methods: Lasso, Ridge and Bayesian Ridge.

The results were validated demonstrating: linearity, normality of error terms, non-self-correlation and homoscedasticity. In all cases the precision obtained is greater than 91.99%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Energy.gov: Department of energy announces 15 million for development of artificial intelligence and machine learning tools (2019)

    Google Scholar 

  2. Feng, C., Cui, M., Hodge, B., Lu, S., Hamann, H.F., Zhang, J.: Unsupervised clustering-based short-term solar forecasting. IEEE Trans. Sustain. Energy 10(4), 2174–2185 (2019). https://doi.org/10.1109/TSTE.2018.2881531

    Article  Google Scholar 

  3. Feshara, H.F., Ibrahim, A.M., El-Amary, N.H., Sharaf, S.M.: Performance evaluation of variable structure controller based on sliding mode technique for a grid-connected solar network. IEEE Access 7, 84349–84359 (2019). https://doi.org/10.1109/ACCESS.2019.2924592

    Article  Google Scholar 

  4. Abdullah, N.A., Koohi-Kamali, S., Rahim, N.A.: Forecasting of solar radiation in Malaysia using the artificial neural network and wavelet transform. In: 5th IET International Conference on Clean Energy and Technology (CEAT2018), pp. 1–8 (2018). https://doi.org/10.1049/cp.2018.1303

  5. Tang, N., Mao, S., Wang, Y., Nelms, R.M.: Solar power generation forecasting With a LASSO-based approach. IEEE Internet Things J. 5(2), 1090–1099 (2018). https://doi.org/10.1109/JIOT.2018.2812155

    Article  Google Scholar 

  6. Wang, Y., Shen, Y., Mao, S., Chen, X., Zou, H.: LASSO and LSTM integrated temporal model for short-term solar intensity forecasting. IEEE Internet Things J. 6(2), 2933–2944 (2019). https://doi.org/10.1109/JIOT.2018.2877510

    Article  Google Scholar 

  7. Obando, E.D., Carvajal, S.X., Pineda Agudelo, J.: Solar radiation prediction using machine learning techniques: a review. IEEE Lat. Am. Trans. 17(04), 684–697 (2019). https://doi.org/10.1109/TLA.2019.8891934

    Article  Google Scholar 

  8. Yang, Z., Liang, Y., Zhang, H., Chai, H., Zhang, B., Peng, C.: Robust sparse logistic regression with the Lq (0 \(<\) q \(<\) 1) regularization for feature selection using gene expression data. IEEE Access 6, 68586–68595 (2018). https://doi.org/10.1109/ACCESS.2018.2880198

    Article  Google Scholar 

  9. Shen, X., Gu, Y.: Nonconvex sparse logistic regression with weakly convex regularization. IEEE Trans. Signal Process. 66(12), 3199–3211 (2018). https://doi.org/10.1109/TSP.2018.2824289

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, F., Xie, R., Song, W., Chen, H.: Optimal seismic reflectivity inversion: data-driven lp loss-lq -regularization sparse regression. IEEE Geosci. Remote Sens. Lett. 16(5), 806–810 (2019). https://doi.org/10.1109/LGRS.2018.2881102

    Article  Google Scholar 

  11. Liu, J., Cosman, P.C., Rao, B.D.: robust linear regression via l0 regularization. IEEE Trans. Signal Process. 66(3), 698–713 (2018). https://doi.org/10.1109/TSP.2017.2771720

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, J., Wang, Z., Zheng, X., Guan, L., Chung, C.Y.: Locally weighted ridge regression for power system online sensitivity identification considering data collinearity. IEEE Trans. Power Syst. 33(2), 1624–1634 (2018). https://doi.org/10.1109/TPWRS.2017.2733580

    Article  Google Scholar 

  13. Park, H., Shiraishi, Y., Imoto, S., Miyano, S.: A novel adaptive penalized logistic regression for uncovering biomarker associated with anti-cancer drug sensitivity. IEEE/ACM Trans. Comput. Biol. Bioinf. 14(4), 771–782 (2017). https://doi.org/10.1109/TCBB.2016.2561937

    Article  Google Scholar 

  14. Owrang, A., Jansson, M.: A model selection criterion for high-dimensional linear regression. IEEE Trans. Signal Process. 66(13), 3436–3446 (2018). https://doi.org/10.1109/TSP.2018.2821628

    Article  MathSciNet  MATH  Google Scholar 

  15. Jia, Y., Kwong, S., Wu, W., Wang, R., Gao, W.: Sparse Bayesian learning-based kernel poisson regression. IEEE Trans. Cybern. 49(1), 56–68 (2019). https://doi.org/10.1109/TCYB.2017.2764099

    Article  Google Scholar 

  16. Bang, J., Oh, S., Kang, K., Cho, Y.: A Bayesian regression based LTE-R handover decision algorithm for high-speed railway systems. IEEE Trans. Veh. Technol. 68(10), 10160–10173 (2019). https://doi.org/10.1109/TVT.2019.2935165

    Article  Google Scholar 

  17. Tatsumi, K., Matsuoka, T.: A software level calibration based on Bayesian regression for a successive stochastic approximation analog-to-digital converter system. IEEE Trans. Cybern. 49(4), 1200–1211 (2019). https://doi.org/10.1109/TCYB.2018.2795238

    Article  Google Scholar 

  18. Zhu, P., Liu, X., Wang, Y., Yang, X.: Mixture semisupervised Bayesian principal component regression for soft sensor modeling. IEEE Access 6, 40909–40919 (2018). https://doi.org/10.1109/ACCESS.2018.2859366

    Article  Google Scholar 

  19. Shao, W., Ge, Z., Yao, L., Song, Z.: Bayesian nonlinear Gaussian mixture regression and its application to virtual sensing for multimode industrial processes. IEEE Trans. Autom. Sci. Eng. 17, 871–885 (2019). https://doi.org/10.1109/TASE.2019.2950716

    Article  Google Scholar 

  20. Liu, C., Tang, L., Liu, J.: A stacked autoencoder with sparse Bayesian regression for end-point prediction problems in steelmaking process. IEEE Trans. Autom. Sci. Eng. 17, 550–561 (2019). https://doi.org/10.1109/TASE.2019.2935314

    Article  Google Scholar 

  21. Zhao, J., Chen, L., Pedrycz, W., Wang, W.: A novel semi-supervised sparse Bayesian regression based on variational inference for industrial datasets with incomplete outputs. IEEE Trans. Syst. Man Cybern.: Syst. 50, 1–14 (2018). https://doi.org/10.1109/TSMC.2018.2864752

    Article  Google Scholar 

  22. Liu, Y., Zhang, N., Wang, Y., Yang, J., Kang, C.: Data-driven power flow linearization: a regression approach. IEEE Trans. Smart Grid 10(3), 2569–2580 (2019). https://doi.org/10.1109/TSG.2018.2805169

    Article  Google Scholar 

  23. Soltan, S., Mittal, P., Poor, H.V.: Line failure detection after a cyber-physical attack on the grid using Bayesian regression. IEEE Trans. Power Syst. 34(5), 3758–3768 (2019). https://doi.org/10.1109/TPWRS.2019.2910396

    Article  Google Scholar 

  24. Shi, D., Ma, H.: A Bayesian inference method and its application in fatigue crack life prediction. IEEE Access 7, 118381–118387 (2019). https://doi.org/10.1109/ACCESS.2019.2935404

    Article  Google Scholar 

  25. Wang, K., Ding, D., Chen, R.: A surrogate modeling technique for electromagnetic scattering analysis of 3-D objects with varying shape. IEEE Antennas Wirel. Propag. Lett. 17(8), 1524–1527 (2018). https://doi.org/10.1109/LAWP.2018.2852659

    Article  Google Scholar 

  26. Elhamifar, E., De Paolis Kaluza, M.C.: Subset selection and summarization in sequential data. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 1035–1045 (2017). http://papers.nips.cc/paper/6704-subset-selection-and-summarization-in-sequential-data.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jose Cruz , Wilson Mamani , Christian Romero or Ferdinand Pineda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cruz, J., Mamani, W., Romero, C., Pineda, F. (2020). Multi-parameter Regression of Photovoltaic Systems using Selection of Variables with the Method: Recursive Feature Elimination for Ridge, Lasso and Bayes. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2020. Lecture Notes in Computer Science(), vol 12566. Springer, Cham. https://doi.org/10.1007/978-3-030-64580-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64580-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64579-3

  • Online ISBN: 978-3-030-64580-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics