Skip to main content

A Deep Learning Based Fault Detection Method for Rocket Launcher Electrical System

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12566))

  • 1323 Accesses

Abstract

This paper proposes a fault detection method for a rocket launcher electrical system by using 1D convolutional neural network. Compared with the method based on analysis of mechanism model and the method based on knowledge, this end-to-end data-driven fault detection method, which only relies on the rich data generated during the running of the system, has the ability of automatic extraction of hierarchical features. The experimental results show that the 1D convolutional neural network designed in this paper achieves the accuracy of 98.66% in the practical fault detection for a rocket electrical system, which is improved by 29% and 13% higher than the traditional fully connected shallow neural network and support vector machine, respectively, which further verifies the feasibility and effectiveness of data-driven deep learning method in fault detection applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moseler, O., Isermann, R.: Application of model-based fault detection to a brushless DC motor. IEEE Trans. Industr. Electron. 47(5), 1015–1020 (2000)

    Article  Google Scholar 

  2. Visinsky, M.L., Cavallaro, J.R., Walker, I.D.: Expert system framework for fault detection and fault tolerance in robotics. Comput. Electr. Eng. 20(5), 421–435 (1994)

    Article  Google Scholar 

  3. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  MATH  Google Scholar 

  4. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  5. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  9. Ren, S.Q., He, K.M., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587. Columbus, Ohio, USA. IEEE (2014)

    Google Scholar 

  11. Girshick, R.: Fast R-CNN. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, pp. 1440–1448. IEEE (2015)

    Google Scholar 

  12. Hubel, D.H., Wiesel, T.N.: Receptive fields binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160(1), 106–154 (1962)

    Article  Google Scholar 

  13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, vol. abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556

  15. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings Conference Computer Vision Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  17. Guo, X., Chen, L., Shen, C.: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. In: Measurement: Journal of the International Measurement Confederation, vol. 93, pp. 490–502 (2016)

    Google Scholar 

  18. Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., Inman, D.J.: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 388, 154–170 (2017)

    Article  Google Scholar 

  19. Ince, T., Kiranyaz, S., Eren, L., Askar, M., Gabbouj, M.: Real-time motor fault detection by 1-D convolutional neural networks. IEEE Trans. Industr. Electron. 63(11), 7067–7075 (2016)

    Article  Google Scholar 

  20. Kiranyaz, S., Ince, T., Abdeljaber, O., et al.: 1-D convolutional neural networks for signal processing applications. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8360–8364. IEEE (2019)

    Google Scholar 

  21. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  22. Yang, Y., Yu, D., Cheng, J.: A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM. Measurement 40(9–10), 943–950 (2007)

    Google Scholar 

  23. Yang, J., Zhang, Y., Zhu, Y.: Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension. Mech. Syst. Signal Process. 21(5), 2012–2024 (2007)

    Article  Google Scholar 

  24. Yu, Y., Junsheng, C.: A roller bearing fault diagnosis method based on EMD energy entropy and ANN. J. Sound Vib. 294(1–2), 269–277 (2006)

    Article  Google Scholar 

  25. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  26. Kiranyaz, S., Ince, T., Gabbouj, M.: Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 63(3), 664–675 (2015)

    Article  Google Scholar 

  27. Acharya, U.R., Oh, S.L., Hagiwara, Y., et al.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 100, 270–278 (2018)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by Joint Fund of NORINCO Group of China for Advanced Research under Grant No. 6141B012102 and by a grant from the Institute Guo Qiang, Tsinghua University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidong Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H. et al. (2020). A Deep Learning Based Fault Detection Method for Rocket Launcher Electrical System. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2020. Lecture Notes in Computer Science(), vol 12566. Springer, Cham. https://doi.org/10.1007/978-3-030-64580-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64580-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64579-3

  • Online ISBN: 978-3-030-64580-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics