Skip to main content

Univariate Time Series Anomaly Labelling Algorithm

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12566))

Abstract

Unsupervised anomaly detection in an n-length univariate time series often comes with high risk. Anomaly contextual dependencies limit the application of binary classification methods. Analyzing the statistical features of data may help enrich the context of anomaly detection. This article proposes a quadratic time algorithm for analyzing possible anomalies in the context of unsupervised learning. Detection of possible anomalies uses Median Absolute Deviation on the residual of a univariate time series. Computation of residuals uses robust STL (Seasonal and Trend decomposition using Loess). Experiments on three datasets (Yahoo, NUMENTA NAB and district-heating substation power profiles) show the ability of the algorithm to enrich anomalies by associating labels such as Certainty, Uncertainty, and Probable, with the probable class indicating a need to further process the anomalies.

The work presented in this article is financed by the Swedish Knowledge Foundation (KKS http://www.kks.se/om-oss/in-english/) under grant no Dnr. 20170182 within the project Data Analytics for Fault Detection in District Heating (DAD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adikaram, K.L.B., Hussein, M.A., Effenberger, M., Becker, T.: Data transformation technique to improve the outlier detection power of Grubbs’ test for data expected to follow linear relation. J. Appl. Math. 2015, 1–9 (2015)

    Article  MATH  Google Scholar 

  2. Ahmad, S., Lavin, A., Purdy, S., Agha, Z.: Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262, 134–147 (2017)

    Article  Google Scholar 

  3. Blázquez-García, A., Conde, A., Mori, U., Lozano, J.A.: A review on outlier/anomaly detection in time series data. arXiv preprint arXiv:2002.04236 (2020)

  4. Braei, M., Wagner, S.: Anomaly detection in univariate time-series: a survey on the state-of-the-art. arXiv preprint arXiv:2004.00433 (2020)

  5. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 1–58 (2009)

    Article  Google Scholar 

  6. Committee, A.M., et al.: Robust statistics-how not to reject outliers. Part 1. Basic concepts. Analyst 114(12), 1693–1697 (1989)

    Google Scholar 

  7. Freeman, C., Merriman, J., Beaver, I., Mueen, A.: Experimental comparison of online anomaly detection algorithms. In: The Thirty-Second International Flairs Conference (2019)

    Google Scholar 

  8. Grechuk, B., Molyboha, A., Zabarankin, M.: Chebyshev inequalities with law-invariant deviation measures. Prob. Eng. Inf. Sci. 24(1), 145–170 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hochenbaum, J., Vallis, O.S., Kejariwal, A.: Automatic anomaly detection in the cloud via statistical learning. arXiv preprint arXiv:1704.07706 (2017)

  10. Huang, H.: Rank based anomaly detection algorithms (2013)

    Google Scholar 

  11. Iwata, T., Toyoda, M., Tora, S., Ueda, N.: Anomaly detection with inexact labels. Mach. Learn. 109(8), 1617–1633 (2020). https://doi.org/10.1007/s10994-020-05880-w

    Article  MathSciNet  MATH  Google Scholar 

  12. Knox, E.M., Ng, R.T.: Algorithms for mining distance based outliers in large datasets. In: Proceedings of the International Conference on Very Large Data Bases, pp. 392–403. Citeseer (1998)

    Google Scholar 

  13. Mehrotra, K.G., Mohan, C.K., Huang, H.: Anomaly Detection Principles and Algorithms. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67526-8

    Book  Google Scholar 

  14. Moustakidis, S., et al.: Innovative technologies for district heating and cooling: indeal project. In: Multidisciplinary Digital Publishing Institute Proceedings, vol. 5, p. 1 (2019)

    Google Scholar 

  15. Pearson, R.K., Neuvo, Y., Astola, J., Gabbouj, M.: Generalized Hampel filters. EURASIP J. Adv. Signal Process. 2016(1), 1–18 (2016)

    Article  Google Scholar 

  16. Rao, T.S., Antunes, A.M.C.: Spatio-temporal modelling of temperature time series: a comparative study. In: Time Series Analysis and Applications to Geophysical Systems, pp. 123–150. Springer, Cham (2004). https://doi.org/10.1007/978-3-319-67526-8

  17. Rousseeuw, P.J., Hubert, M.: Robust statistics for outlier detection. Wiley Interdisc. Rev. Data Min. Knowl. Disc. 1(1), 73–79 (2011)

    Article  Google Scholar 

  18. Wen, Q., Gao, J., Song, X., Sun, L., Xu, H., Zhu, S.: RobustSTL: a robust seasonal-trend decomposition algorithm for long time series. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5409–5416 (2019)

    Google Scholar 

  19. Wu, W., He, L., Lin, W.: Local trend inconsistency: a prediction-driven approach to unsupervised anomaly detection in multi-seasonal time series. arXiv preprint arXiv:1908.01146 (2019)

  20. Yahoo: S5 - a labeled anomaly detection dataset, version 1.0(16m). https://webscope.sandbox.yahoo.com/catalog.php?datatype=s%5c&did=70

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gideon Mbiydzenyuy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mbiydzenyuy, G. (2020). Univariate Time Series Anomaly Labelling Algorithm. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2020. Lecture Notes in Computer Science(), vol 12566. Springer, Cham. https://doi.org/10.1007/978-3-030-64580-9_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64580-9_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64579-3

  • Online ISBN: 978-3-030-64580-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics