Skip to main content

An Application of Machine Learning to Study Utilities Expenses in the Brazilian Navy

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12565))

  • 1514 Accesses

Abstract

The extensive Brazilian territory endows its Navy with more than 350 facilities with several distinct activities that transcend military operations. Understanding the variation of all the essential and common costs of those facilities proved to be a challenging and relevant task. This paper presents a machine learning approach to support the decision-making process based on data that represents several facilities attributes, where models were trained, and those with the best performance were further analyzed. Besides data limitations, our results show that predictions and explanations derived from the models can be applied to support decision-making within the organization and contribute with insights to improve management over its resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Curristine, T., Lonti, Z., Joumard, I.: Improving public sector efficiency: challenges and opportunities. OECD J. Budg. 7, 161 (2007)

    Google Scholar 

  2. Damanpour, F., Schneider, M.: Characteristics of innovation and innovation adoption in public organizations: assessing the role of managers. J. Pub. Adm. Res. Theory 19, 495–522 (2009)

    Article  Google Scholar 

  3. Janssen, M., Estevez, E.: Lean government and platform-based governance-doing more with less. Gov. Inf. Q. 30, S1–S8 (2013). https://doi.org/10.1016/j.giq.2012.11.003

    Article  Google Scholar 

  4. de Vries, H., Bekkers, V., Tummers, L.: Innovation in the public sector: a systematic review and future research agenda. Pub. Adm. 94, 146–166 (2016). https://doi.org/10.1111/padm.12209

    Article  Google Scholar 

  5. Agbozo, E., Asamoah, B.K.: Data-driven e-government: exploring the socio-economic ramifications. eJournal eDemocracy Open Gov. 11, 81–90 (2019). https://doi.org/10.29379/jedem.v11i1.510

  6. Christodoulou, P., et al.: Data Makes the Public Sector Go Round BT - Electronic Government. Presented at the (2018)

    Google Scholar 

  7. Marinha do Brasil: Estrutura Organizacional. https://www.marinha.mil.br/estrutura-organizacional. Accessed 12 Jan 2020

  8. Ministério da Defesa: Marinha do Brasil. https://www.defesa.gov.br/forcas-armadas/marinha-do-brasil. Accessed 12 Dec 2020

  9. De Rezende, L.B., Blackwell, P.: The Brazilian national defence strategy: defence expenditure choices and military power. Def. Peace Econ. 1–16 (2019). https://doi.org/10.1080/10242694.2019.1588030

  10. Svendsen, N.G., Kalita, P.K., Gebhart, D.L.: Environmental risk reduction and combat readiness enhancement of military training lands through range design and maintenance. In: 2005 ASAE Annual International Meeting (2005)

    Google Scholar 

  11. Morrel-Samuels, P., Francis, E., Shucard, S.: Merged datasets: an analytic tool for evidence-based management. Calif. Manage. Rev. 52, 120–139 (2009). https://doi.org/10.1525/cmr.2009.52.1.120

    Article  Google Scholar 

  12. Brynjolfsson, E., McElheran, K.: The rapid adoption of data-driven decision-making. Am. Econ. Rev. 106, 133–139 (2016). https://doi.org/10.1257/aer.p20161016

    Article  Google Scholar 

  13. Kumar, V., et al.: Data-driven services marketing in a connected world. J. Serv. Manag. 24, 330–352 (2013). https://doi.org/10.1108/09564231311327021

    Article  Google Scholar 

  14. Lerzan, A.: How do you measure what you can’t define? The current state of loyalty measurement and management. J. Serv. Manag. 24, 356–381 (2013). https://doi.org/10.1108/JOSM-01-2013-0018

    Article  Google Scholar 

  15. Kiron, D.: Lessons from Becoming a Data-Driven Organization. MIT Sloan Manag. Rev. 58 (2017)

    Google Scholar 

  16. Jang, H.: A decision support framework for robust R&D budget allocation using machine learning and optimization. Decis. Support Syst. 121, 1–12 (2019). https://doi.org/10.1016/j.dss.2019.03.010

    Article  Google Scholar 

  17. Kartal, H., Oztekin, A., Gunasekaran, A., Cebi, F.: An integrated decision analytic framework of machine learning with multi-criteria decision making for multi-attribute inventory classification. Comput. Ind. Eng. 101, 599–613 (2016). https://doi.org/10.1016/j.cie.2016.06.004

    Article  Google Scholar 

  18. Bilal, M., Oyedele, L.O.: Guidelines for applied machine learning in construction industry—a case of profit margins estimation. Adv. Eng. Informatics. 43, 101013 (2020). https://doi.org/10.1016/j.aei.2019.101013

    Article  Google Scholar 

  19. Robinson, C., et al.: Machine learning approaches for estimating commercial building energy consumption. Appl. Energy 208, 889–904 (2017). https://doi.org/10.1016/j.apenergy.2017.09.060

    Article  Google Scholar 

  20. Pallonetto, F., De Rosa, M., Milano, F., Finn, D.P.: Demand response algorithms for smart-grid ready residential buildings using machine learning models. Appl. Energy 239, 1265–1282 (2019). https://doi.org/10.1016/j.apenergy.2019.02.020

    Article  Google Scholar 

  21. Yaseen, Z.M., et al.: Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Adv. Eng. Softw. 115, 112–125 (2018). https://doi.org/10.1016/j.advengsoft.2017.09.004

    Article  Google Scholar 

  22. Xiao, Y., Wu, J., Lin, Z., Zhao, X.: A deep learning-based multi-model ensemble method for cancer prediction. Comput. Methods Programs Biomed. 153, 1–9 (2018). https://doi.org/10.1016/j.cmpb.2017.09.005

    Article  Google Scholar 

  23. Ye, H., Liang, L., Li, G.Y., Kim, J., Lu, L., Wu, M.: Machine learning for vehicular networks: recent advances and application examples. IEEE Veh. Technol. Mag. 13, 94–101 (2018). https://doi.org/10.1109/MVT.2018.2811185

    Article  Google Scholar 

  24. SIPRI - The World Bank: Military expenditure (% of GDP) | Data. https://data.worldbank.org/indicator/MS.MIL.XPND.GD.ZS. Accessed 28 Jan 2020

  25. Alptekin, A., Levine, P.: Military expenditure and economic growth: a meta-analysis. Eur. J. Polit. Econ. 28, 636–650 (2012). https://doi.org/10.1016/j.ejpoleco.2012.07.002

    Article  Google Scholar 

  26. Caruso, R., Francesco, A.: Country survey: military expenditure and its impact on productivity in Italy, 1988-2008. Def. Peace Econ. 23, 471–484 (2012). https://doi.org/10.1080/10242694.2011.608964

    Article  Google Scholar 

  27. Hou, D.: The determinants of military expenditure in Asia and Oceania, 1992–2016: a dynamic panel analysis (2018). https://doi.org/10.1515/peps-2018-0004

  28. Rath, M., Pattanayak, B.K., Pati, B.: Energy efficient MANET protocol using cross layer design for military applications. Def. Sci. J. 66, 146–150 (2016). https://doi.org/10.14429/dsj.66.9705

  29. Sudhakar, I., Madhusudhan Reddy, G., Srinivasa Rao, K.: Ballistic behavior of boron carbide reinforced AA7075 aluminium alloy using friction stir processing – an experimental study and analytical approach. Def. Technol. 12, 25–31 (2016). https://doi.org/10.1016/j.dt.2015.04.005

    Article  Google Scholar 

  30. Stablein, R.: Data in Organization Studies. Sage Publications, London (1999)

    Book  Google Scholar 

  31. Instituto Brasileiro de Geografia e Estatística: Cidades e Estados: Rondônia. https://www.ibge.gov.br/pt/cidades-e-estados.html. Accessed 22 Jan 2020

  32. Insituto Nacional de Meteorologia - INMET: BDMEP - Banco de Dados Meteorológicos para Ensino e Pesquisa. http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep. Accessed 19 July 2019

  33. Osborne, J.: Improving your data transformations: Applying the Box-Cox transformation. Pract. Assess. Res. Eval. 15, 12 (2010)

    Google Scholar 

  34. R Core Team: R: A Language and Environment for Statistical Computing (2017). https://www.r-project.org/

  35. van Buuren, S., Groothuis-Oudshoorn, K.: {mice}: multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67 (2011)

    Article  Google Scholar 

  36. Kursa, M.B., Rudnicki, W.R.: Feature Selection with the Boruta Package. J. Stat. Softw. 36, 1–13 (2010)

    Article  Google Scholar 

  37. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This paper is financed by National Funds of the FCT – Portuguese Foundation for Science and Technology within the project No. UIDB/03182/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, S., Crispim, J. (2020). An Application of Machine Learning to Study Utilities Expenses in the Brazilian Navy. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2020. Lecture Notes in Computer Science(), vol 12565. Springer, Cham. https://doi.org/10.1007/978-3-030-64583-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64583-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64582-3

  • Online ISBN: 978-3-030-64583-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics