Skip to main content

Supercomputer Simulations in Development of 3D Ultrasonic Tomography Devices

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1331))

Included in the following conference series:

  • 626 Accesses

Abstract

This study aims to determine the optimal characteristics of ultrasound tomographic scanners for differential breast cancer diagnosis. Numerical simulations of various tomographic schemes were performed on a supercomputer. The parameters of simulations were matched to those of physical experiments. One of the most important problems in designing a tomographic scanner is the choice of a tomographic examination scheme. The layer-by-layer (ā€œ2.5Dā€) scheme is the most widely used in medical and industrial tomography. In this scheme, the inverse problem is solved for each 2D plane separately. A fully 3D tomographic scheme is an alternative variant, in which the acoustic properties of the object are reconstructed as 3D images. This study shows that the layered 2.5D scheme has limited capabilities and cannot be used for precise tissue characterization in a general case. The paper presents a comparison of 2.5D and 3D image reconstruction methods in terms of vertical and horizontal resolution, computational complexity of the methods and technical parameters of tomographic scanners. The inverse problem of tomographic image reconstruction is posed as a coefficient inverse problem for the wave equation. The reconstruction algorithms are designed for GPU clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sak, M., et al.: Using speed of sound imaging to characterize breast density. Ultrasound Med. Biol. 43(1), 91ā€“103 (2017). https://doi.org/10.1016/j.ultrasmedbio.2016.08.021

    ArticleĀ  Google ScholarĀ 

  2. Wiskin, J., et al.: Three-dimensional nonlinear inverse scattering: quantitative transmission algorithms, refraction corrected reflection, scanner design, and clinical results. J. Acoust. Soc. Am. 133(5), 3229 (2013). https://doi.org/10.1121/1.4805138

    ArticleĀ  Google ScholarĀ 

  3. Birk, M., Dapp, R., Ruiter, N.V., Becker, J.: GPU-based iterative transmission reconstruction in 3D ultrasound computer tomography. J. Parallel Distrib. Comput. 74, 1730ā€“1743 (2014). https://doi.org/10.1016/j.jpdc.2013.09.007

    ArticleĀ  Google ScholarĀ 

  4. Burov, V.A., Zotov, D.I., Rumyantseva, O.D.: Reconstruction of the sound velocity and absorption spatial distributions in soft biological tissue phantoms from experimental ultrasound tomography data. Acoust. Phys. 61(2), 231ā€“248 (2015). https://doi.org/10.1134/s1063771015020013

    ArticleĀ  Google ScholarĀ 

  5. Goncharsky, A., Romanov, S., Seryozhnikov, S.: A computer simulation study of soft tissue characterization using low-frequency ultrasonic tomography. Ultrasonics 67, 136ā€“150 (2016). https://doi.org/10.1016/j.ultras.2016.01.008

    ArticleĀ  Google ScholarĀ 

  6. Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Low-frequency 3D ultrasound tomography: dual-frequency method. Numer. Methods Program. 19(4), 479ā€“495 (2018). https://doi.org/10.26089/NumMet.v19r443

    ArticleĀ  Google ScholarĀ 

  7. Natterer, F.: Sonic imaging. In: Handbook of Mathematical Methods in Imaging, pp. 1ā€“23. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-27795-5_37-2

  8. Klibanov, M.V., Timonov, A.A.: Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. Walter de Gruyter GmbH (2004). https://doi.org/10.1515/9783110915549

  9. Goncharsky, A.V., Romanov, S.Y.: Iterative methods for solving coefficient inverse problems of wave tomography in models with attenuation. Inverse Prob. 33(2), 025003 (2017). https://doi.org/10.1088/1361-6420/33/2/025003

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  10. Goncharsky, A.V., Romanov, S.Y.: Supercomputer technologies in inverse problems of ultrasound tomography. Inverse Prob. 29(7), 075004 (2013). https://doi.org/10.1088/0266-5611/29/7/075004

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  11. Goncharsky, A., Seryozhnikov, S.: Supercomputer technology for ultrasound tomographic image reconstruction: mathematical methods and experimental results. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2018. CCIS, vol. 965, pp. 401ā€“413. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05807-4_34

    ChapterĀ  Google ScholarĀ 

  12. Goncharsky, A., Seryozhnikov, S.: Three-dimensional ultrasound tomography: mathematical methods and experimental results. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2019. CCIS, vol. 1129, pp. 463ā€“474. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36592-9_38

    ChapterĀ  Google ScholarĀ 

  13. Goncharsky, A.V., Kubyshkin, V.A., Romanov, S.Y., Seryozhnikov, S.Y.: Inverse problems of experimental data interpretation in 3D ultrasound tomography. Numer. Methods Program. 20, 254ā€“269 (2019). https://doi.org/10.26089/NumMet.v20r323

    ArticleĀ  Google ScholarĀ 

  14. Goncharsky, A.V., Seryozhnikov, S.Y.: The architecture of specialized GPU clusters used for solving the inverse problems of 3D low-frequency ultrasonic tomography. In: Voevodin, V., Sobolev S. (eds.) Supercomputing. RuSCDays 2017. Communications in Computer and Information Science, vol. 793, pp. 363ā€“395. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71255-0_29

  15. Voevodin, V., et al.: Supercomputer Lomonosov-2: large scale, deep monitoring and fine analytics for the user community. Supercomput. Front. Innov. 6(2), 4ā€“11 (2019). https://doi.org/10.14529/jsfi190201

    ArticleĀ  Google ScholarĀ 

  16. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31(139), 629 (1977). https://doi.org/10.1090/s0025-5718-1977-0436612-4

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  17. Fink, M.: Time reversal in acoustics. Contemp. Phys. 37(2), 95ā€“109 (1996). https://doi.org/10.1080/00107519608230338

    ArticleĀ  Google ScholarĀ 

  18. Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl. 4, 1035ā€“1038 (1963)

    MATHĀ  Google ScholarĀ 

  19. Bakushinsky, A., Goncharsky, A.: Ill-Posed Problems: Theory and Applications. Springer, Heidelberg (1994). https://doi.org/10.1007/978-94-011-1026-6

  20. Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G.: Numerical Methods for the Solution of Ill-Posed Problems. Springer, Dordrecht (1995). https://doi.org/10.1007/978-94-015-8480-7

    BookĀ  MATHĀ  Google ScholarĀ 

  21. Bakushinsky, A., Goncharsky, A.: Iterative Methods for Solving Ill-Posed Problems. Nauka, Moscow (1989)

    Google ScholarĀ 

  22. Hamilton, B., Bilbao, S.: Fourth-order and optimised finite difference schemes for the 2-D wave equation. In: Proceedings of the 16th International Conference on Digital Audio Effects (DAFx-13), pp. 363ā€“395. Springer, Heidelberg (2013). https://doi.org/10.1121/1.4800308

  23. Goncharsky, A.V., Romanov, S.Y., Seryozhnikov, S.Y.: Inverse problems of layer-by-layer ultrasonic tomography with the data measured on a cylindrical surface. Numer. Methods Program. 18(3), 267ā€“276 (2017)

    Google ScholarĀ 

Download references

Acknowledgements

The work is carried out according to the research program of Moscow Center of Fundamental and Applied Mathematics. The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Seryozhnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goncharsky, A., Seryozhnikov, S. (2020). Supercomputer Simulations in Development of 3D Ultrasonic Tomography Devices. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2020. Communications in Computer and Information Science, vol 1331. Springer, Cham. https://doi.org/10.1007/978-3-030-64616-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64616-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64615-8

  • Online ISBN: 978-3-030-64616-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics