Skip to main content

Packing and Covering Triangles in Dense Random Graphs

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12577))

Abstract

Given a simple graph \(G=(V,E)\), a subset of E is called a triangle cover if it intersects each triangle of G. Let \(\nu _t(G)\) and \(\tau _t(G)\) denote the maximum number of pairwise edge-disjoint triangles in G and the minimum cardinality of a triangle cover of G, respectively. Tuza [25] conjectured in 1981 that \(\tau _t(G)/\nu _t(G)\le 2\) holds for every graph G. In this paper, we consider Tuza’s Conjecture on dense random graphs. We prove that under \(\mathcal {G}(n,p)\) model with \(p=\varOmega (1)\), for any \(0<\epsilon <1\), \(\tau _t(G)\le 1.5(1+\epsilon )\nu _t(G)\) holds with high probability, and under \(\mathcal {G}(n,m)\) model with \(m=\varOmega (n^2)\), for any \(0<\epsilon <1\), \(\tau _t(G)\le 1.5(1+\epsilon )\nu _t(G)\) holds with high probability. In some sense, on dense random graphs, these conclusions verify Tuza’s Conjecture.

This research is supported part by National Natural Science Foundation of China under Grant No. 11901605, and by the disciplinary funding of Central University of Finance and Economics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baron, J.D.: Two problems on cycles in random graphs. Ph.D. thesis, Rutgers University-Graduate School-New Brunswick (2016)

    Google Scholar 

  2. Baron, J.D., Kahn, J.: Tuza’s conjecture is asymptotically tight for dense graphs. Comb. Probab. Comput. 25(5), 645–667 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bennett, P., Dudek, A., Zerbib, S.: Large triangle packings and Tuza’s conjecture in sparse random graphs. Comb. Probab. Comput. 29(5), 757–779 (2020)

    Article  MathSciNet  Google Scholar 

  4. Botler, F., Fernandes, C., Gutiérrez, J.: On Tuza’s conjecture for triangulations and graphs with small treewidth. Electron. Notes Theor. Comput. Sci. 346, 171–183 (2019)

    Article  Google Scholar 

  5. Botler, F., Fernandes, C.G., Gutiérrez, J.: On Tuza’s conjecture for graphs with treewidth at most 6. In: Anais do III Encontro de Teoria da Computação. SBC (2018)

    Google Scholar 

  6. Chalermsook, P., Khuller, S., Sukprasert, P., Uniyal, S.: Multi-transversals for triangles and the Tuza’s conjecture. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1955–1974. SIAM (2020)

    Google Scholar 

  7. Chapuy, G., DeVos, M., McDonald, J., Mohar, B., Scheide, D.: Packing triangles in weighted graphs. SIAM Journal on Discrete Mathematics 28(1), 226–239 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X., Diao, Z., Hu, X., Tang, Z.: Sufficient conditions for Tuza’s conjecture on packing and covering triangles. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.) IWOCA 2016. LNCS, vol. 9843, pp. 266–277. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44543-4_21

    Chapter  Google Scholar 

  9. Chen, X., Diao, Z., Hu, X., Tang, Z.: Total dual integrality of triangle covering. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 128–143. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48749-6_10

    Chapter  Google Scholar 

  10. Chen, X., Diao, Z., Hu, X., Tang, Z.: Covering triangles in edge-weighted graphs. Theory Comput. Syst. 62(6), 1525–1552 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cui, Q., Haxell, P., Ma, W.: Packing and covering triangles in planar graphs. Graphs and Combinatorics 25(6), 817–824 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Erdös, P., Gallai, T., Tuza, Z.: Covering and independence in triangle structures. Discret. Math. 150(1–3), 89–101 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haxell, P., Kostochka, A., Thomassé, S.: Packing and covering triangles in\(K_4\)-free planar graphs. Graphs and Combinatorics 28(5), 653–662 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Haxell, P.E.: Packing and covering triangles in graphs. Discret. Math. 195(1), 251–254 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Haxell, P.E., Kohayakawa, Y.: Packing and covering triangles in tripartite graphs. Graphs and Combinatorics 14(1), 1–10 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Haxell, P.E., Rödl, V.: Integer and fractional packings in dense graphs. Combinatorica 21(1), 13–38 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hosseinzadeh, H., Soltankhah, N.: Relations between some packing and covering parameters of graphs. In: The 46th Annual Iranian Mathematics Conference, p. 715 (2015)

    Google Scholar 

  18. Krivelevich, M.: On a conjecture of Tuza about packing and covering of triangles. Discret. Math. 142(1), 281–286 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Krivelevich, M.: Triangle factors in random graphs. Comb. Probab. Comput. 6(3), 337–347 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lakshmanan, A., Bujtás, C., Tuza, Z.: Induced cycles in triangle graphs. Discret. Appl. Math. 209, 264–275 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Munaro, A.: Triangle packings and transversals of some \(K_4\)-freegraphs. Graphs and Combinatorics 34(4), 647–668 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Puleo, G.J.: Tuza’s conjecture for graphs with maximum average degree less than 7. Eur. J. Comb. 49, 134–152 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Puleo, G.J.: Maximal k-edge-colorable subgraphs, Vizing’s Theorem, and Tuza’s Conjecture. Discret. Math. 340(7), 1573–1580 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ruciński, A.: Matching and covering the vertices of a random graph by copies of a given graph. Discret. Math. 105(1–3), 185–197 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tuza, Z.: Conjecture. In: Finite and Infinite Sets, Proc. Colloq. Math. Soc. Janos Bolyai, p. 888 (1981)

    Google Scholar 

  26. Tuza, Z.: A conjecture on triangles of graphs. Graphs and Combinatorics 6(4), 373–380 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The authors are very indebted to Professor Xujin Chen and Professor Xiaodong Hu for their invaluable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Diao .

Editor information

Editors and Affiliations

Appendix: A List of Mathematical Symbols

Appendix: A List of Mathematical Symbols

\(\mathcal {G}(n,p)\)

Given \(0\le p\le 1\), \(\mathbf {Pr}(\{v_i,v_j\}\in G)=p\) for all \(v_i,v_j\)

 

With these probabilities mutually independent

\(\mathcal {G}(n,m)\)

Given \(0\le m\le n(n-1)/2\), let G be defined by

 

Randomly picking m edges from all \(v_i, v_j\) pairs

\(\tau _t(G)\)

The minimum cardinality of a triangle cover in G

\(\nu _t(G)\)

The maximum cardinality of a triangle packing in G

\(\tau ^{*}_t(G)\)

The minimum cardinality of a fractional triangle cover in G

\(\nu ^{*}_t(G)\)

The maximum cardinality of a fractional triangle packing in G

b(G)

The maximum number of edges of sub-bipartite in G

\(\delta (G)\)

The minimum degree of graph G

\(f(n)=O(g(n))\)

\(\exists ~c>0, n_{0}\in \mathbb {N}_{+},\forall n\ge n_{0}, 0\le f(n)\le cg(n)\)

\(f(n)=\varOmega (g(n))\)

\(\exists ~c>0, n_{0}\in \mathbb {N}_{+},\forall n\ge n_{0}, 0\le cg(n)\le f(n)\)

\(f(n)=\varTheta (g(n))\)

\(\exists ~c_{1}>0, c_{2}>0, n_{0}\in \mathbb {N}_{+},\forall n\ge n_{0}\),\(0\le c_{1}g(n)\le f(n)\le c_{2}g(n)\)

\(f(n)=o(g(n))\)

\(\forall ~c>0, \exists ~n_{0}\in \mathbb {N}_{+},\forall n\ge n_{0}, 0\le f(n)< cg(n)\)

\(f(n)=\omega (g(n))\)

\(\forall ~c>0, \exists ~n_{0}\in \mathbb {N}_{+},\forall n\ge n_{0}, 0\le cg(n)< f(n)\)

Union Bound Inequality:

For any finite or countably infinite sequence of events \(E_1,E_2,\dots \), then

$$\mathbf {Pr}\left[ ~\bigcup _{i\ge 1} E_i~\right] \le \sum _{i\ge 1} \mathbf {Pr}(E_i).$$

Chernoff’s Inequalities:

Let \(X_1,X_2,\dots ,X_n\) be mutually independent 0–1 random variables with \(\mathbf {Pr}[X_i = 1] = p_i\). Let \(X = \sum _{i=1}^n X_i\) and \(\mu = \mathbf{E}[X]\). For \(0 < \epsilon \le 1\), then the following bounds hold:

$$ \mathbf {Pr}[X \ge (1+\epsilon )\mu ] \le e^{-\epsilon ^2 \mu /3},~~~~\mathbf {Pr}[X \le (1-\epsilon )\mu ] \le e^{-\epsilon ^2 \mu /2}. $$

Chebyshev’s Inequality:

For any \(a > 0\),

$$\mathbf {Pr}[|X-\mathbf{E}[X]|\ge a] \le \frac{\mathbf {Var}[X]}{a^2}.$$

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, Z., Diao, Z. (2020). Packing and Covering Triangles in Dense Random Graphs. In: Wu, W., Zhang, Z. (eds) Combinatorial Optimization and Applications. COCOA 2020. Lecture Notes in Computer Science(), vol 12577. Springer, Cham. https://doi.org/10.1007/978-3-030-64843-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64843-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64842-8

  • Online ISBN: 978-3-030-64843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics