Skip to main content

Vertex Fault-Tolerant Spanners for Weighted Points in Polygonal Domains

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12577))

  • 725 Accesses

Abstract

Given a set S of n points, a weight function w to associate a non-negative weight to each point in S, a positive integer \(k \ge 1\), and a real number \(\epsilon > 0\), we devise the following algorithms to compute a k-vertex fault-tolerant spanner network G(SE) for the metric space induced by the weighted points in S: (1) When the points in S are located in a simple polygon, we present an algorithm to compute G with multiplicative stretch \(\sqrt{10}+\epsilon \), and the number of edges in G is \(O(k n (\lg {n})^2)\). (2) When the points in S are located in the free space of a polygonal domain \(\mathcal{P}\), we present an algorithm to compute G of size \(O(\sqrt{h} k n(\lg {n})^2)\) and its multiplicative stretch is \(6+\epsilon \). Here, h is the number of simple polygonal holes in \(\mathcal{P}\).

This research is supported in part by SERB MATRICS grant MTR/2017/000474.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abam, M.A., Adeli, M., Homapour, H., Asadollahpoor, P.Z.: Geometric spanners for points inside a polygonal domain. In: Proceedings of Symposium on Computational Geometry, pp. 186–197 (2015)

    Google Scholar 

  2. Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J.: Region-fault tolerant geometric spanners. Discret. Comput. Geom. 41(4), 556–582 (2009)

    Article  MathSciNet  Google Scholar 

  3. Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J., Smid, M.H.M.: Geometric spanners for weighted point sets. Algorithmica 61(1), 207–225 (2011)

    Article  MathSciNet  Google Scholar 

  4. Abam, M.A., de Berg, M., Seraji, M.J.R.: Geodesic spanners for points on a polyhedral terrain. In: Proceedings of Symposium on Discrete Algorithms, pp. 2434–2442 (2017)

    Google Scholar 

  5. Abam, M.A., Har-Peled, S.: New constructions of SSPDs and their applications. Comput. Geom. 45(5), 200–214 (2012)

    Article  MathSciNet  Google Scholar 

  6. Alon, N., Seymour, P.D., Thomas, R.: Planar separators. SIAM J. Discret. Math. 7(2), 184–193 (1994)

    Article  MathSciNet  Google Scholar 

  7. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discret. Comput. Geom. 9(1), 81–100 (1993). https://doi.org/10.1007/BF02189308

    Article  MathSciNet  MATH  Google Scholar 

  8. Aronov, B., et al.: Sparse geometric graphs with small dilation. Comput. Geom. 40(3), 207–219 (2008)

    Article  MathSciNet  Google Scholar 

  9. Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.H.M.: Euclidean spanners: short, thin, and lanky. In: Proceedings of Annual ACM Symposium on Theory of Computing, pp. 489–498 (1995)

    Google Scholar 

  10. Arya, S., Mount, D.M., Smid, M.: Dynamic algorithms for geometric spanners of small diameter: randomized solutions. Comput. Geom. 13(2), 91–107 (1999)

    Article  MathSciNet  Google Scholar 

  11. Arya, S., Mount, D.M., Smid, M.H.M.: Randomized and deterministic algorithms for geometric spanners of small diameter. In: Proceedings of Annual Symposium on Foundations of Computer Science, pp. 703–712 (1994)

    Google Scholar 

  12. Arya, S., Smid, M.H.M.: Efficient construction of a bounded-degree spanner with low weight. Algorithmica 17(1), 33–54 (1997)

    Article  MathSciNet  Google Scholar 

  13. Bhattacharjee, S., Inkulu, R.: Fault-tolerant additive weighted geometric spanners. In: Pal, S.P., Vijayakumar, A. (eds.) CALDAM 2019. LNCS, vol. 11394, pp. 29–41. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11509-8_3

    Chapter  Google Scholar 

  14. Bhattacharjee, S., Inkulu, R.: Geodesic fault-tolerant additive weighted spanners. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 38–51. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_4

    Chapter  Google Scholar 

  15. Bose, P., Carmi, P., Farshi, M., Maheshwari, A., Smid, M.: Computing the greedy spanner in near-quadratic time. Algorithmica 58(3), 711–729 (2010)

    Article  MathSciNet  Google Scholar 

  16. Bose, P., Carmi, P., Chaitman, L., Collette, S., Katz, M.J., Langerman, S.: Stable roommates spanner. Comput. Geom. 46(2), 120–130 (2013)

    Article  MathSciNet  Google Scholar 

  17. Bose, P., Carmi, P., Couture, M.: Spanners of additively weighted point sets. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 367–377. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69903-3_33

    Chapter  Google Scholar 

  18. Bose, P., Czyzowicz, J., Kranakis, E., Krizanc, D., Maheshwari, A.: Polygon cutting: revisited. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 81–92. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46515-7_7

    Chapter  Google Scholar 

  19. Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: On plane constrained bounded-degree spanners. Algorithmica 81(4), 1392–1415 (2018). https://doi.org/10.1007/s00453-018-0476-8

    Article  MathSciNet  MATH  Google Scholar 

  20. Carmi, P., Chaitman, L.: Stable roommates and geometric spanners. In: Proceedings of the 22nd Annual Canadian Conference on Computational Geometry, pp. 31–34 (2010)

    Google Scholar 

  21. Chew, L.P.: There are planar graphs almost as good as the complete graph. J. Comput. Syst. Sci. 39(2), 205–219 (1989)

    Article  MathSciNet  Google Scholar 

  22. Czumaj, A., Zhao, H.: Fault-tolerant geometric spanners. Discret. Comput. Geom. 32(2), 207–230 (2004)

    Article  MathSciNet  Google Scholar 

  23. Das, G., Narasimhan, G.: A fast algorithm for constructing sparse Euclidean spanners. Int. J. Comput. Geom. Appl. 7(4), 297–315 (1997)

    Article  MathSciNet  Google Scholar 

  24. Eppstein, D.: Spanning trees and spanners. In: Sack, J.-R., Urrutia, J. (ed.) Handbook of Computational Geometry, pp. 425–461. Elsevier (1999)

    Google Scholar 

  25. Gudmundsson, J., Knauer, C.: Dilation and detour in geometric networks. In: Gonzalez, T. (ed.) Handbook of Approximation Algorithms and Metaheuristics. Chapman & Hall (2007)

    Google Scholar 

  26. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy algorithms for constructing sparse geometric spanners. SIAM J. Comput. 31(5), 1479–1500 (2002)

    Article  MathSciNet  Google Scholar 

  27. Kapoor, S., Li, X.-Y.: Efficient construction of spanners in d-dimensions. CoRR, abs/1303.7217 (2013)

    Google Scholar 

  28. Levcopoulos, C., Narasimhan, G., Smid, M.H.M.: Improved algorithms for constructing fault-tolerant spanners. Algorithmica 32(1), 144–156 (2002)

    Article  MathSciNet  Google Scholar 

  29. Lukovszki, T.: New results on fault tolerant geometric spanners. In: Dehne, F., Sack, J.-R., Gupta, A., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 193–204. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48447-7_20

    Chapter  Google Scholar 

  30. Narasimhan, G., Smid, M.H.M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  31. Peleg, D., Schäffer, A.: Graph spanners. J. Graph Theory 13(1), 99–116 (1989)

    Article  MathSciNet  Google Scholar 

  32. Solomon, S.: From hierarchical partitions to hierarchical covers: optimal fault-tolerant spanners for doubling metrics. In: Proceedings of Symposium on Theory of Computing, pp. 363–372 (2014)

    Google Scholar 

  33. Talwar, K.: Bypassing the embedding: algorithms for low dimensional metrics. In: Proceedings of ACM Symposium on Theory of Computing, pp. 281–290 (2004)

    Google Scholar 

  34. Varadarajan, K.R.: A divide-and-conquer algorithm for min-cost perfect matching in the plane. In: Proceedings of Annual Symposium on Foundations of Computer Science, pp. 320–329 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Inkulu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Inkulu, R., Singh, A. (2020). Vertex Fault-Tolerant Spanners for Weighted Points in Polygonal Domains. In: Wu, W., Zhang, Z. (eds) Combinatorial Optimization and Applications. COCOA 2020. Lecture Notes in Computer Science(), vol 12577. Springer, Cham. https://doi.org/10.1007/978-3-030-64843-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64843-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64842-8

  • Online ISBN: 978-3-030-64843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics