Abstract
k-orthogonal line center problem computes a set of k axis-parallel lines for a given set of n points such that the maximum among the distances between each point and its nearest line is minimized. In this paper, we design a deterministic bi-criteria approximation algorithm that runs in \(O(k^2n \log n)\) time and returns at most \(\frac{3}{2}k\) lines such that the minimized distance is within 16r. Here r is the minimized distance in the optimal solution with k line centers for the given input.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, P.K., Procopiuc, C.M.: Approximation algorithms for projective clustering. J. Algorithms 46(2), 115–139 (2003)
Agarwal, P.K., Procopiuc, C.M., Varadarajan, K.R.: A (1+ \(\varepsilon \))-approximation algorithm for 2-line-center. Comput. Geom. 26(2), 119–128 (2003). https://doi.org/10.1007/s10878-012-9579-3
Agarwal, P.K., Procopiuc, C.M., Varadarajan, K.R.: Approximation algorithms for a k-line center. Algorithmica 42(3), 221–230 (2005). https://doi.org/10.1007/s00453-005-1166-x
Aggarwal, C.C., Wolf, J.L., Yu, P.S., Procopiuc, C., Park, J.S.: Fast algorithms for projected clustering. SIGMOD Rec. 28, 61–72 (1999)
Aggarwal, C.C., Yu, P.S.: Finding generalized projected clusters in high dimensional spaces. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, SIGMOD 2000, pp. 70–81. Association for Computing Machinery, New York (2000)
Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMoD Rec. 27(2), 94–105 (1998)
Calinescu, G., Dumitrescu, A., Karloff, H., Wan, P.J.: Separating points by axis-parallel lines. Int. J. Comput. Geom. Appl. 15, 575–590 (2005)
Dom, M., Fellows, M.R., Rosamond, F.A.: Parameterized complexity of stabbing rectangles and squares in the plane. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 298–309. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00202-1_26
Feldman, D., Fiat, A., Sharir, M., Segev, D.: Bi-criteria linear-time approximations for generalized k-mean/median/center. In: Proceedings of the Twenty-Third Annual Symposium on Computational Geometry, SCG 2007, pp. 19–26. Association for Computing Machinery, New York (2007)
Frederickson, G.N., Johnson, D.B.: Generalized selection and ranking: sorted matrices. SIAM J. Comput. 13(1), 14–30 (1984)
Gaur, D.R., Ibaraki, T., Krishnamurti, R.: Constant ratio approximation algorithms for the rectangle stabbing problem and the rectilinear partitioning problem. J. Algorithms 43(1), 138–152 (2002)
Giannopoulos, P., Knauer, C., Rote, G., Werner, D.: Fixed-parameter tractability and lower bounds for stabbing problems. Comput. Geom. 46(7), 839–860 (2013). euroCG 2009
Hassin, R., Megiddo, N.: Approximation algorithms for hitting objects with straight lines. Discret. Appl. Math. 30(1), 29–42 (1991)
Jaromczyk, J.W., Kowaluk, M.: The two-line center problem from a polar view: a new algorithm and data structure. In: Akl, S.G., Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp. 13–25. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60220-8_47
Kovaleva, S., Spieksma, F.C.R.: Approximation algorithms for rectangle stabbing and interval stabbing problems. SIAM J. Discret. Math. 20(3), 748–768 (2006)
Megiddo, N., Tamir, A.: Finding least-distances lines. SIAM J. Algebraic Discret. Methods 4, 207–211 (1983)
Procopiuc, C.M., Jones, M., Agarwal, P.K., Murali, T.M.: A Monte Carlo algorithm for fast projective clustering. In: Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, SIGMOD 2002, pp. 418–427. Association for Computing Machinery, New York (2002)
Renner, W.D., Pugh, N.O., Ross, D.B., Berg, R.E., Hall, D.C.: An algorithm for planning stereotactic brain implants. Int. J. Radiat. Oncol. Biol. Phys. 13(4), 631–637 (1987)
Tansel, B.C., Francis, R.L., Lowe, T.J.: State of the art-location on networks: a survey. Part I: the p-center and p-median problems. Manag. Sci. 29(4), 482–497 (1983)
Zanjirani Farahani, R., Hekmatfar, M.: Facility Location: Concepts, Models, Algorithms and Case Studies. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-7908-2151-2
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Chakraborty, B., Das, A.K., Das, S., Mukherjee, J. (2020). Approximating k-Orthogonal Line Center. In: Wu, W., Zhang, Z. (eds) Combinatorial Optimization and Applications. COCOA 2020. Lecture Notes in Computer Science(), vol 12577. Springer, Cham. https://doi.org/10.1007/978-3-030-64843-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-64843-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-64842-8
Online ISBN: 978-3-030-64843-5
eBook Packages: Computer ScienceComputer Science (R0)