Skip to main content

An Approximation of the Zero Error Capacity by a Greedy Algorithm

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12577))

  • 727 Accesses

Abstract

We present a greedy algorithm that determines a lower bound on the zero error capacity. The algorithm has many new advantages, e.g., it does not store a whole product graph in a computer memory and it uses the so-called distributions in all dimensions to get a better approximation of the zero error capacity. We also show an additional application of our algorithm.

This article was partially supported by the Narodowe Centrum Nauki under grant DEC-2011/02/A/ST6/00201.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The number of vertices and edges of G we often denote by n and m, respectively, thus \(|V(G)|=n\) and \(|E(G)|=m\).

  2. 2.

    We assume that W is non-empty.

  3. 3.

    It is worth to note that the number of maximal cliques in G is at most exponential with respect to |V(G)| [11], while the number of edges in G is at most quadratic with respect to |V(G)|.

  4. 4.

    A graph is vertex transitive if for any two vertices u and v of this graph, there is an automorphism such that the image of u is v.

  5. 5.

    There is a better upper bound on \(\varTheta (G)\), the so-called Lovász theta function [28].

  6. 6.

    This part of the proposition was found by my colleague [30].

  7. 7.

    Our algorithm works for an arbitrary graph product, as well as for an arbitrary single graph.

  8. 8.

    A fullerene graph is the graph formed from the vertices and edges of a convex polyhedron, whose faces are all pentagons or hexagons and all vertices have degree equal to three.

  9. 9.

    We can use the so-called Lovász theta function instead of \(\alpha ^*\), since it is also multiplicative with respect to the strong product for all graphs [28].

  10. 10.

    We assume that a network (graph) G is non-empty, i.e., \(|E(G)|\ne 0\).

References

  1. Adhikari, M.R., Adhikari, A.: Basic Modern Algebra with Applications. Springer, New Delhi (2014). https://doi.org/10.1007/978-81-322-1599-8

    Book  MATH  Google Scholar 

  2. Barrus, M.D.: Havel-Hakimi residues of unigraphs. Inform. Process. Lett. 112(1–2), 44–48 (2012). https://doi.org/10.1016/j.ipl.2011.10.011

    Article  MathSciNet  MATH  Google Scholar 

  3. Baumert, L.D., McEliece, R.J., Rodemich, E., Rumsey, Jr., H.C., Stanley, R., Taylor, H.: A combinatorial packing problem. In: Computers in algebra and number theory (Proceedings of SIAM-AMS Symposium on Applied Mathematics, New York, 1970), SIAM-AMS Proceedings, vol. IV, pp. 97–108. American Mathematical Society, Providence (1971)

    Google Scholar 

  4. Chalupa, D., Pospíchal, J.: On the growth of large independent sets in scale-free networks. In: Zelinka, I., Suganthan, P.N., Chen, G., Snasel, V., Abraham, A., Rössler, O. (eds.) Nostradamus 2014: Prediction, Modeling and Analysis of Complex Systems. AISC, vol. 289, pp. 251–260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07401-6_24

    Chapter  MATH  Google Scholar 

  5. Codenotti, B., Gerace, I., Resta, G.: Some remarks on the Shannon capacity of odd cycles. Ars Combin. 66, 243–257 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  7. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, 2nd edn. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  8. Csiszár, I., Körner, J.: Information Theory, 2nd edn. Cambridge University Press, Cambridge (2011). https://doi.org/10.1017/CBO9780511921889. Coding theorems for discrete memoryless systems

    Book  MATH  Google Scholar 

  9. Favaron, O., Mahéo, M., Saclé, J.F.: On the residue of a graph. J. Graph Theory 15(1), 39–64 (1991). https://doi.org/10.1002/jgt.3190150107

    Article  MathSciNet  MATH  Google Scholar 

  10. Favaron, O., Mahéo, M., Saclé, J.F.: Some eigenvalue properties in graphs (conjectures of Graffiti. II). Discrete Math. 111(1–3), 197–220 (1993). https://doi.org/10.1016/0012-365X(93)90156-N. Graph theory and combinatorics (Marseille-Luminy, 1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16533-7

    Book  MATH  Google Scholar 

  12. Fowler, P.W., Manolopoulos, D.: An Atlas of Fullerenes. Courier Corporation (2007)

    Google Scholar 

  13. Fowler, P., Daugherty, S., Myrvold, W.: Independence number and fullerene stability. Chem. Phys. Lett. 448(1), 75–82 (2007). https://doi.org/10.1016/j.cplett.2007.09.054. http://www.sciencedirect.com/science/article/pii/S0009261407012948

    Article  MATH  Google Scholar 

  14. Gross, J.L., Yellen, J., Zhang, P. (eds.): Handbook of Graph Theory. Discrete Mathematics and its Applications, 2nd edn. CRC Press, Boca Raton (2014)

    MATH  Google Scholar 

  15. Gyárfás, A., Sebő, A., Trotignon, N.: The chromatic gap and its extremes. J. Combin. Theory Ser. B 102(5), 1155–1178 (2012). https://doi.org/10.1016/j.jctb.2012.06.001

    Article  MathSciNet  MATH  Google Scholar 

  16. Hales, R.S.: Numerical invariants and the strong product of graphs. J. Combin. Theory Ser. B 15, 146–155 (1973)

    Article  MathSciNet  Google Scholar 

  17. Hammack, R., Imrich, W., Klavžar, S.: Handbook of Product Graphs. Discrete Mathematics and its Applications. CRC Press, Boca Raton (2011). With a foreword by Peter Winkler

    Book  Google Scholar 

  18. Harant, J., Schiermeyer, I.: On the independence number of a graph in terms of order and size. Discrete Math. 232(1–3), 131–138 (2001). https://doi.org/10.1016/S0012-365X(00)00298-3

    Article  MathSciNet  MATH  Google Scholar 

  19. Jurkiewicz, M.: A generalization of the Shannon’s theorem and its application to complex networks. preprint

    Google Scholar 

  20. Jurkiewicz, M.: Relevant measures of product networks. preprint

    Google Scholar 

  21. Jurkiewicz, M.: Average distance is submultiplicative and subadditive with respect to the strong product of graphs. Appl. Math. Comput. 315, 278–285 (2017). https://doi.org/10.1016/j.amc.2017.06.025

    Article  MathSciNet  MATH  Google Scholar 

  22. Jurkiewicz, M., Kubale, M., Ocetkiewicz, K.: On the independence number of some strong products of cycle-powers. Found. Comput. Decis. Sci. 40(2), 133–141 (2015). https://doi.org/10.1515/fcds-2015-0009

    Article  MathSciNet  MATH  Google Scholar 

  23. Jurkiewicz, M., Pikies, T.: Selected topics in modern mathematics. Chap. Some classical lower bounds on the independence number and their behavior on the strong product of graphs. Publishing House AKAPIT, Kraków, inst. Politechnika Krakowska (2015)

    Google Scholar 

  24. Körner, J., Orlitsky, A.: Zero-error information theory. IEEE Trans. Inform. Theory 44(6), 2207–2229 (1998). https://doi.org/10.1109/18.720537. Information theory: 1948-1998

    Article  MathSciNet  MATH  Google Scholar 

  25. Kubale, M. (ed.): Graph Colorings, Contemporary Mathematics, vol. 352. American Mathematical Society, Providence (2004). https://doi.org/10.1090/conm/352

    Book  Google Scholar 

  26. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kronecker graphs: an approach to modeling networks. J. Mach. Learn. Res. 11, 985–1042 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Loehr, N.A.: Bijective Combinatorics. Discrete Mathematics and its Applications. CRC Press, Boca Raton (2011)

    Book  Google Scholar 

  28. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25(1), 1–7 (1979). https://doi.org/10.1109/TIT.1979.1055985. http://dx.doi.org.mathematical-reviews.han.bg.pg.edu.pl/10.1109/TIT.1979.1055985

    Article  MathSciNet  MATH  Google Scholar 

  29. McEliece, R.J.: The Theory of Information and Coding, Encyclopedia of Mathematics and Its Applications, vol. 86. Cambridge University Press, Cambridge (2004). https://doi.org/10.1017/CBO9780511819896. http://dx.doi.org.mathematical-reviews.han.bg.pg.edu.pl/10.1017/CBO9780511819896. With a foreword by Mark Kac

    Book  Google Scholar 

  30. Pikies, T.: Personal communication (2015)

    Google Scholar 

  31. Scheinerman, E.R., Ullman, D.H.: Fractional Graph Theory. Dover Publications Inc., Mineola (2011). A rational approach to the theory of graphs, With a foreword by Claude Berge, Reprint of the 1997 original

    MATH  Google Scholar 

  32. Shannon, C.E.: The zero error capacity of a noisy channel. Inst. Radio Eng. Trans. Inf. Theory IT–2(September), 8–19 (1956)

    Article  MathSciNet  Google Scholar 

  33. Whang, J.J., Gleich, D.F., Dhillon, I.S.: Overlapping community detection using seed set expansion. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, CIKM 2013, pp. 2099–2108. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2505515.2505535

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Jurkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jurkiewicz, M. (2020). An Approximation of the Zero Error Capacity by a Greedy Algorithm. In: Wu, W., Zhang, Z. (eds) Combinatorial Optimization and Applications. COCOA 2020. Lecture Notes in Computer Science(), vol 12577. Springer, Cham. https://doi.org/10.1007/978-3-030-64843-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64843-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64842-8

  • Online ISBN: 978-3-030-64843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics