Skip to main content

On the Complexity of a Periodic Scheduling Problem with Precedence Relations

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12577))

  • 793 Accesses

Abstract

Periodic scheduling problems (PSP) are frequently found in a wide range of applications. In these problems, we schedule a set of tasks on a set of machines in time, where each task is to be executed repeatedly with a given period. The tasks are assigned to machines, and at any moment, at most one task can be processed by a given machine. Since no existing works address the complexity of PSPs with precedence relations, we consider the most basic PSP with chains and end-to-end latency constraints given in the number of periods. We define a degeneracy of a chain as the number of broken precedence relations within the time window of one period. We address the general problem of finding a schedule with the minimum total degeneracy of all chains. We prove that this PSP is strongly NP-hard even when restricted to unit processing times, a common period, and 16 machines, by a reduction from the job shop scheduling problem. Finally, we propose a local search heuristic to solve the general PSP and present its experimental evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    On the other hand, two tasks with equal period are not necessarily in the same \(C_{c}\).

References

  1. Bar-Noy, A., Bhatia, R., Naor, J.S., Schieber, B.: Minimizing service and operation costs of periodic scheduling. Math. Oper. Res. 27(3), 518–544 (2002)

    Article  MathSciNet  Google Scholar 

  2. Błażewicz, J., Pesch, E., Sterna, M.: The disjunctive graph machine representation of the job shop scheduling problem. Eur. J. Oper. Res. 127(2), 317–331 (2000)

    Article  Google Scholar 

  3. Cai, Y., Kong, M.: Nonpreemptive scheduling of periodic tasks in uni-and multiprocessor systems. Algorithmica 15, 572–599 (1996)

    Article  MathSciNet  Google Scholar 

  4. Dvorak, J., Hanzalek, Z.: Multi-variant time constrained FlexRay static segment scheduling. In: 2014 10th IEEE Workshop on Factory Communication Systems (WFCS 2014), pp. 1–8 (2014)

    Google Scholar 

  5. Dvořák, J., Hanzálek, Z.: Multi-variant scheduling of critical time-triggered communication in incremental development process: application to flexray. IEEE Trans. Veh. Technol. 68(1), 155–169 (2018)

    Article  Google Scholar 

  6. Eisenbrand, F., Hähnle, N., Niemeier, M., Skutella, M., Verschae, J., Wiese, A.: Scheduling periodic tasks in a hard real-time environment. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 299–311. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14165-2_26

    Chapter  Google Scholar 

  7. Eisenbrand, F., et al.: Solving an avionics real-time scheduling problem by advanced IP-methods. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 11–22. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15775-2_2

    Chapter  Google Scholar 

  8. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.R.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discret. Math. 5, 287–326 (1979)

    Article  MathSciNet  Google Scholar 

  9. Jacobs, T., Longo, S.: A new perspective on the windows scheduling problem. arXiv preprint arXiv:1410.7237 (2014)

  10. Jeffay, K., Stanat, D.F., Martel, C.U.: On non-preemptive scheduling of periodic and sporadic tasks. In: IEEE Real-time Systems Symposium, pp. 129–139. IEEE, USA (1991)

    Google Scholar 

  11. Korst, J., Aarts, E., Lenstra, J.K., Wessels, J.: Periodic multiprocessor scheduling. In: Aarts, E.H.L., van Leeuwen, J., Rem, M. (eds.) Parle 1991 Parallel Architectures and Languages Europe. LNCS, pp. 166–178. Springer, Heidelberg (1991). https://doi.org/10.1007/978-3-662-25209-3_12

    Chapter  Google Scholar 

  12. Korst, J., Aarts, E., Lenstra, J.K.: Scheduling periodic tasks. INFORMS J. Comput. 8(4), 428–435 (1996)

    Article  MathSciNet  Google Scholar 

  13. Lenstra, J.K., Kan, A.R.: Computational complexity of discrete optimization problems. In: Annals of Discrete Mathematics, vol. 4, pp. 121–140. Elsevier (1979)

    Google Scholar 

  14. Nawrocki, J.R., Czajka, A., Complak, W.: Scheduling cyclic tasks with binary periods. Inf. Process. Lett. 65(4), 173–178 (1998)

    Article  MathSciNet  Google Scholar 

  15. Ogata, K.: Discrete-Time Control Systems, vol. 2. Prentice Hall, Englewood Cliffs (1995)

    Google Scholar 

  16. Oliver, R.S., Craciunas, S.S., Steiner, W.: IEEE 802.1 Qbv gate control list synthesis using array theory encoding. In: 2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pp. 13–24. IEEE (2018)

    Google Scholar 

  17. Wei, W., Liu, C.: On a periodic maintenance problem. Oper. Res. Lett. 2(2), 90–93 (1983)

    Article  Google Scholar 

Download references

Acknowledgements

Research leading to these results has received funding from the EU ECSEL Joint Undertaking and the Ministry of Education of the Czech Republic under grant agreement 826452 (project Arrowhead Tools).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Minaeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hladík, R., Minaeva, A., Hanzálek, Z. (2020). On the Complexity of a Periodic Scheduling Problem with Precedence Relations. In: Wu, W., Zhang, Z. (eds) Combinatorial Optimization and Applications. COCOA 2020. Lecture Notes in Computer Science(), vol 12577. Springer, Cham. https://doi.org/10.1007/978-3-030-64843-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64843-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64842-8

  • Online ISBN: 978-3-030-64843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics