Skip to main content

Visualising the Knowledge Domain of Artificial Intelligence in Marketing: A Bibliometric Analysis

  • Conference paper
  • First Online:
Re-imagining Diffusion and Adoption of Information Technology and Systems: A Continuing Conversation (TDIT 2020)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 617))

Included in the following conference series:

  • 2910 Accesses

Abstract

As the number of research outputs in the field of AI in Marketing increased greatly in the past 20 years, a systematic review of the literature and its developmental process is essential to provide a consolidated view of this area. This study conducted a bibliometric analysis for the knowledge domain of AI in Marketing by using 617 research outputs from the Web of Science database from 1992 to 2020. Knowledge maps of AI in marketing research were visualised by employing CiteSpace software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davenport, T., Guha, A., Grewal, D., Bressgott, T.: How artificial intelligence will change the future of marketing. J. Acad. Mark. Sci. 48(1), 24–42 (2019). https://doi.org/10.1007/s11747-019-00696-0

    Article  Google Scholar 

  2. Duan, Y., Edwards, J.S., Dwivedi, Y.K.: Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. Int. J. Inf. Manage. 48, 63–71 (2019)

    Article  Google Scholar 

  3. Kuo, R.: A sales forecasting system based on fuzzy neural network with initial weights generated by genetic algorithm. Eur. J. Oper. Res. 129, 496–517 (2001)

    Article  MathSciNet  Google Scholar 

  4. Hung, L.-P.: A personalized recommendation system based on product taxonomy for one-to-one marketing online. Expert Syst. Appl. 29, 383–392 (2005)

    Article  Google Scholar 

  5. Kaefer, F., Heilman, C.M., Ramenofsky, S.D.: A neural network application to consumer classification to improve the timing of direct marketing activities. Comput. Oper. Res. 32, 2595–2615 (2005)

    Article  Google Scholar 

  6. Zakaryazad, A., Duman, E.: A profit-driven Artificial Neural Network (ANN) with applications to fraud detection and direct marketing. Neurocomputing 175, 121–131 (2016)

    Article  Google Scholar 

  7. Liu, L., Zhou, B., Zou, Z., Yeh, S.-C., Zheng, L.: A smart unstaffed retail shop based on artificial intelligence and IoT. In: 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 1–4. IEEE (2018)

    Google Scholar 

  8. Pillai, R., Sivathanu, B., Dwivedi, Y.K.: Shopping intention at AI-powered automated retail stores (AIPARS). J. Retail. Consum. Serv. 57, 102207 (2020)

    Article  Google Scholar 

  9. Gómez-Pérez, G., Martín-Guerrero, J.D., Soria-Olivas, E., Balaguer-Ballester, E., Palomares, A., Casariego, N.: Assigning discounts in a marketing campaign by using reinforcement learning and neural networks. Expert Syst. Appl. 36, 8022–8031 (2009)

    Article  Google Scholar 

  10. Dwivedi, Y.K., et al.: Artificial Intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manage. (2019). https://doi.org/10.1016/j.ijinfomgt.2019.08.002

    Article  Google Scholar 

  11. Martínez-López, F.J., Casillas, J.: Artificial intelligence-based systems applied in industrial marketing: an historical overview, current and future insights. Ind. Mark. Manage. 42, 489–495 (2013)

    Article  Google Scholar 

  12. Peng, R.-Z., Zhu, C., Wu, W.-P.: Visualizing the knowledge domain of intercultural competence research: a bibliometric analysis. Int. J. Intercult. Relat. 74, 58–68 (2020)

    Article  Google Scholar 

  13. Ye, N., Kueh, T.-B., Hou, L., Liu, Y., Yu, H.: A bibliometric analysis of corporate social responsibility in sustainable development. J. Clean. Prod. 272, 122679 (2020). https://doi.org/10.1016/j.jclepro.2020.122679

    Article  Google Scholar 

  14. Chen, C., Ibekwe-SanJuan, F., Hou, J.: The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. J. Am. Soc. Inform. Sci. Technol. 61, 1386–1409 (2010)

    Article  Google Scholar 

  15. MSV, J.: Here Are Three Factors That Accelerate The Rise Of Artificial Intelligence (2018). https://www.forbes.com/sites/janakirammsv/2018/05/27/here-are-three-factors-that-accelerate-the-rise-of-artificial-intelligence

  16. Chen, L.-S., Hsu, C.-C., Chen, M.-C.: Customer segmentation and classification from blogs by using data mining: an example of VOIP phone. Cybern. Syst. Int. J. 40, 608–632 (2009)

    Article  Google Scholar 

  17. Utku, A., Akcayol, M.A.: Deep learning based prediction model for the next purchase. Adv. Electr. Comput. Eng. 20, 35–44 (2020)

    Article  Google Scholar 

  18. Dwivedi, Y.K., et al.: Setting the future of digital and social media marketing research: perspectives and research propositions. Int. J. Inf. Manage. 102168 (2020). https://doi.org/10.1016/j.ijinfomgt.2020.102168

  19. Stone, M., et al.: Artificial intelligence (AI) in strategic marketing decision-making: a research agenda. The Bottom Line (2020). https://doi.org/10.1108/BL-03-2020-0022

    Article  Google Scholar 

  20. Rumpf, C., Boronczyk, F., Breuer, C.: Predicting consumer gaze hits: a simulation model of visual attention to dynamic marketing stimuli. J. Bus. Res. 111, 208–217 (2020)

    Article  Google Scholar 

  21. Homburg, C., Theel, M., Hohenberg, S.: Marketing excellence: nature, measurement, and investor valuations. J. Mark. 84(4), 1–22 (2020). https://doi.org/10.1177/0022242920925517

  22. Liu, X.: Analyzing the impact of user-generated content on B2B firms’ stock performance: big data analysis with machine learning methods. Ind. Mark. Manage. 86, 30–39 (2020)

    Article  Google Scholar 

  23. Neubert, M.: The impact of digitalization on the speed of internationalization of lean global startups. Technol. Innov. Manage. Rev. 8(5), 44–54 (2018)

    Article  Google Scholar 

  24. Tidhar, R., Eisenhardt, K.M.: Get rich or die trying… finding revenue model fit using machine learning and multiple cases. Strateg. Manage. J. 41, 1245–1273 (2020)

    Article  Google Scholar 

  25. Baray, J., Pelé, M.: A new geographical pricing model within the principle of geomarketing-mix. Recherche et Applications en Marketing (Engl. Ed.) 35(3), 29–51 (2020). https://doi.org/10.1177/2051570720906077

  26. Wamba-Taguimdje, S.-L., Wamba, S.F., Kamdjoug, J.R.K., Wanko, C.E.T.: Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects. Bus. Process Manage. J. (2020). https://doi.org/10.1108/BPMJ-10-2019-0411

    Article  Google Scholar 

  27. Kirilenko, A.P., Stepchenkova, S.O., Kim, H., Li, X.: Automated sentiment analysis in tourism: comparison of approaches. J. Travel Res. 57, 1012–1025 (2018)

    Article  Google Scholar 

  28. Sobhanifard, Y.: Hybrid modelling of the consumption of organic foods in Iran using exploratory factor analysis and an artificial neural network. Br. Food J. (2018). https://doi.org/10.1108/BFJ-12-2016-0604

    Article  Google Scholar 

  29. De Bellis, E., Johar, G.V.: Autonomous shopping systems: identifying and overcoming barriers to consumer adoption. J. Retail. (2020). https://doi.org/10.1016/j.jretai.2019.12.004

    Article  Google Scholar 

  30. Tsafarakis, S., Saridakis, C., Baltas, G., Matsatsinis, N.: Hybrid particle swarm optimization with mutation for optimizing industrial product lines: an application to a mixed solution space considering both discrete and continuous design variables. Ind. Mark. Manage. 42, 496–506 (2013)

    Article  Google Scholar 

  31. Kumar, S., Gahalawat, M., Roy, P.P., Dogra, D.P., Kim, B.-G.: Exploring impact of age and gender on sentiment analysis using machine learning. Electronics 9, 374 (2020)

    Article  Google Scholar 

  32. Wang, C.-Y., Lin, Y.-C., Chang, H.-C., Chou, S.-C.T.: Consumer sentiment in tweets and coupon information-sharing behavior: an initial exploration. In: Information Diffusion Management and Knowledge Sharing: Breakthroughs in Research and Practice, pp. 823–842. IGI Global (2020)

    Google Scholar 

  33. Mikalef, P., Pappas, I.O., Krogstie, J., Pavlou, P.A.: Big data and business analytics: a research agenda for realizing business value. Inf. Manage. 57, 103237 (2020)

    Article  Google Scholar 

  34. Pappas, I.O., Mikalef, P., Giannakos, M.N., Krogstie, J., Lekakos, G.: Big data and business analytics ecosystems: paving the way towards digital transformation and sustainable societies. IseB 16(3), 479–491 (2018). https://doi.org/10.1007/s10257-018-0377-z

    Article  Google Scholar 

  35. Kar, A.K., Dwivedi, Y.K.: Theory building with big data-driven research–Moving away from the “What” towards the “Why”. Int. J. Inf. Manage. 54, 102205 (2020). https://doi.org/10.1016/j.ijinfomgt.2020.102205

    Article  Google Scholar 

  36. Mikalef, P., Fjørtoft, S.O., Torvatn, H.Y.: Artificial Intelligence in the public sector: a study of challenges and opportunities for Norwegian municipalities. In: Pappas, I., Mikalef, P., Dwivedi, Y., Jaccheri, L., Krogstie, J., Mäntymäki, M. (eds.) Digital Transformation for a Sustainable Society in the 21st Century. I3E 2019. Lecture Notes in Computer Science, vol. 11701, pp. 267–277. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29374-1_22

    Chapter  Google Scholar 

  37. Sun, T.Q., Medaglia, R.: Mapping the challenges of Artificial Intelligence in the public sector: Evidence from public healthcare. Gov. Inf. Quart. 36, 368–383 (2019)

    Article  Google Scholar 

  38. Grover, P., Kar, A.K., Dwivedi, Y.K.: Understanding artificial intelligence adoption in operations management: insights from the review of academic literature and social media discussions. Ann. Oper. Res. 1–37 (2020). https://doi.org/10.1007/s10479-020-03683-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Ismagiloiva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ismagiloiva, E., Dwivedi, Y., Rana, N. (2020). Visualising the Knowledge Domain of Artificial Intelligence in Marketing: A Bibliometric Analysis. In: Sharma, S.K., Dwivedi, Y.K., Metri, B., Rana, N.P. (eds) Re-imagining Diffusion and Adoption of Information Technology and Systems: A Continuing Conversation. TDIT 2020. IFIP Advances in Information and Communication Technology, vol 617. Springer, Cham. https://doi.org/10.1007/978-3-030-64849-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64849-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64848-0

  • Online ISBN: 978-3-030-64849-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics