Skip to main content

Determinants and Barriers of Artificial Intelligence Adoption – A Literature Review

  • Conference paper
  • First Online:
Re-imagining Diffusion and Adoption of Information Technology and Systems: A Continuing Conversation (TDIT 2020)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 617))

Included in the following conference series:

Abstract

Different theories, models and frameworks have been used to study technology adoption, some explaining the determinants of adoption at the individual level, some at the organizational level and some at both. As Artificial Intelligence (AI) is gaining traction in many sectors, it will be beneficial to understand the determinants and barriers to AI adoption. In this paper, an attempt has been made to review journal articles and other reports pertaining to AI adoption and understand the adoption theories used and the factors that facilitate and those that hinder AI adoption. Articles on adoption studies of autonomous vehicles, big data analytics, robots and cognitive engagement applications dominated the list of journal articles. Diffusion of Innovation, Technology, Organization and Environment Framework and the unified theory of acceptance and use of technology (UTAUT) were some of the dominant theories/frameworks used. Factors influencing adoption at the individual level were related to trust, security, purchase price, intrinsic motivation, social influence, utilitarian benefit whereas at the organizational level, it was related to the technical competencies, strategic road mapping for AI, top management support and the digital maturity of the organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.mckinsey.com/featured-insights/artificial-intelligence/global-ai-survey-ai-provesits-worth-but-few-scale-impact.

References

  1. Adnan, N., Nordin, S.M., bin Bahruddin, M.A., Ali, M.: How trust can drive forward the user acceptance to the technology? In-vehicle technology for autonomous vehicle. Transp. Res. Part A: Policy Pract. 118, 819–836 (2018)

    Google Scholar 

  2. Androutsopoulou, A., Karacapilidis, N., Loukis, E., Charalabidis, Y.: Transforming the communication between citizens and government through AI-guided chatbots. Gov. Inf. Q. 36(2), 358–367 (2019)

    Article  Google Scholar 

  3. Baig, M.I., Shuib, L., Yadegaridehkordi, E.: Big data adoption: state of the art and research challenges. Inf. Process. Manag. 56(6), 102095 (2019)

    Article  Google Scholar 

  4. Bawack, R.E., Kamdjoug, J.R.K.: Adequacy of UTAUT in clinician adoption of health information systems in developing countries: the case of Cameroon. Int. J. Med. Inform. 109, 15–22 (2018)

    Article  Google Scholar 

  5. Berliner, R.M., Hardman, S., Tal, G.: Uncovering early adopter’s perceptions and purchase intentions of automated vehicles: insights from early adopters of electric vehicles in California. Transp. Res. Part F: Traffic Psychol. Behav. 60, 712–722 (2019)

    Article  Google Scholar 

  6. Carreiro, H., Oliveira, T.: Impact of transformational leadership on the diffusion of innovation in firms: application to mobile cloud computing. Comput. Ind. 107, 104–113 (2019)

    Article  Google Scholar 

  7. Chakravarty, S., Dubinsky, A.: Individual investors’ reactions to decimalization: innovation diffusion in financial markets. J. Econ. Psychol. 26(1), 89–103 (2005)

    Article  Google Scholar 

  8. Chen, S., Wang, H., Meng, Q.: Designing autonomous vehicle incentive program with uncertain vehicle purchase price. Transp. Res. Part C: Emerg. Technol. 103, 226–245 (2019)

    Article  Google Scholar 

  9. Cruz-Jesus, F., Pinheiro, A., Oliveira, T.: Understanding CRM adoption stages: empirical analysis building on the TOE framework. Comput. Ind. 109, 1–13 (2019)

    Article  Google Scholar 

  10. Cunningham, M.L., Regan, M.A., Horberry, T., Weeratunga, K., Dixit, V.: Public opinion about automated vehicles in Australia: results from a large-scale national survey. Transp. Res. Part A: Policy Pract. 129, 1–18 (2019)

    Google Scholar 

  11. Du, N., et al.: Look who’s talking now: implications of AV’s explanations on driver’s trust, AV preference, anxiety and mental workload. Transp. Res. Part C: Emerg. Technol. 104, 428–442 (2019)

    Article  Google Scholar 

  12. Fan, W., Liu, J., Zhu, S., Pardalos, P.M.: Investigating the impacting factors for the healthcare professionals to adopt artificial intelligence-based medical diagnosis support system (AIMDSS). Ann. Oper. Res. 1–26 (2018)

    Google Scholar 

  13. Ghobakhloo, M., Ching, N.T.: Adoption of digital technologies of smart manufacturing in SMEs. J. Ind. Inf. Integr. 16, 100107 (2019)

    Google Scholar 

  14. Gursoy, D., Chi, O.H., Lu, L., Nunkoo, R.: Consumers acceptance of artificially intelligent (AI) device use in service delivery. Int. J. Inf. Manag. 49, 157–169 (2019)

    Article  Google Scholar 

  15. Hoque, R., Sorwar, G.: Understanding factors influencing the adoption of mHealth by the elderly: an extension of the UTAUT model. Int. J. Med. Inform. 101, 75–84 (2017)

    Article  Google Scholar 

  16. Kamal, S.A., Shafiq, M., Kakria, P.: Investigating acceptance of telemedicine services through an extended technology acceptance model (TAM). Technol. Soc. 60, 101212 (2020)

    Article  Google Scholar 

  17. Lai, Y., Sun, H., Ren, J.: Understanding the determinants of big data analytics (BDA) adoption in logistics and supply chain management. Int. J. Logist. Manag. (2018)

    Google Scholar 

  18. Lakshmi, V., Bahli, B.: Understanding the robotization landscape transformation: a centering resonance analysis. J. Innov. Knowl. 5(1), 59–67 (2020)

    Article  Google Scholar 

  19. Latikka, R., Turja, T., Oksanen, A.: Self-efficacy and acceptance of robots. Comput. Hum. Behav. 93, 157–163 (2019)

    Article  Google Scholar 

  20. Lee, Y.C., Mirman, J.H.: Parents’ perspectives on using autonomous vehicles to enhance children’s mobility. Transp. Res. Part C: Emerg. Technol. 96, 415–431 (2018)

    Article  Google Scholar 

  21. Liu, P., Guo, Q., Ren, F., Wang, L., Xu, Z.: Willingness to pay for self-driving vehicles: influences of demographic and psychological factors. Transp. Res. Part C: Emerg. Technol. 100, 306–317 (2019)

    Article  Google Scholar 

  22. Liu, Z., Zhu, L., Roberts, R., Tong, W.: Toward clinical implementation of next generation sequencing-based genetic testing in rare diseases: where are we?. Trends Genet. (2019)

    Google Scholar 

  23. Lu, L., Cai, R., Gursoy, D.: Developing and validating a service robot integration willingness scale. Int. J. Hospital. Manag. 80, 36–51 (2019)

    Article  Google Scholar 

  24. Luo, Q., Saigal, R., Chen, Z., Yin, Y.: Accelerating the adoption of automated vehicles by subsidies: a dynamic games approach. Transp. Res. Part B: Methodol. 129, 226–243 (2019)

    Article  Google Scholar 

  25. Magsamen-Conrad, K., Upadhyaya, S., Joa, C.Y., Dowd, J.: Bridging the divide: using UTAUT to predict multigenerational tablet adoption practices. Comput. Hum. Behav. 50, 186–196 (2015)

    Google Scholar 

  26. Manis, K.T., Choi, D.: The virtual reality hardware acceptance model (VR-HAM): extending and individuating the technology acceptance model (TAM) for virtual reality hardware. J. Bus. Res. 100, 503–513 (2019)

    Article  Google Scholar 

  27. McLean, G., Osei-Frimpong, K.: Hey Alexa… examine the variables influencing the use of artificial intelligent in-home voice assistants. Comput. Hum. Behav. 99, 28–37 (2019)

    Article  Google Scholar 

  28. Merfeld, K., Wilhelms, M.P., Henkel, S.: Being driven autonomously–a qualitative study to elicit consumers’ overarching motivational structures. Transp. Res. Part C: Emerg. Technol. 107, 229–247 (2019)

    Article  Google Scholar 

  29. Montenegro, J.L.Z., da Costa, C.A., da Rosa Righi, R.: Survey of conversational agents in health. Expert Syst. Appl. (2019)

    Google Scholar 

  30. Oliveira, T., Martins, R., Sarker, S., Thomas, M., Popovič, A.: Understanding SaaS adoption: the moderating impact of the environment context. Int. J. Inf. Manag. 49, 1–12 (2019)

    Article  Google Scholar 

  31. Sepasgozar, S.M., Hawken, S., Sargolzaei, S., Foroozanfa, M.: Implementing citizen centric technology in developing smart cities: a model for predicting the acceptance of urban technologies. Technol. Forecast. Soc. Chang. 142, 105–116 (2019)

    Article  Google Scholar 

  32. Shabanpour, R., Golshani, N., Shamshiripour, A., Mohammadian, A.K.: Eliciting preferences for adoption of fully automated vehicles using best-worst analysis. Transp. Res. Part C: Emerg. Technol. 93, 463–478 (2018)

    Article  Google Scholar 

  33. Shin, J., Park, Y., Lee, D.: Who will be smart home users? An analysis of adoption and diffusion of smart homes. Technol. Forecast. Soc. Chang. 134, 246–253 (2018)

    Article  Google Scholar 

  34. Simpson, J.R., Mishra, S., Talebian, A., Golias, M.M.: An estimation of the future adoption rate of autonomous trucks by freight organizations. Res. Transp. Econ. 76, 100737 (2019)

    Article  Google Scholar 

  35. Talebian, A., Mishra, S.: Predicting the adoption of connected autonomous vehicles: a new approach based on the theory of diffusion of innovations. Transp. Res. Part C: Emerg. Technol. 95, 363–380 (2018)

    Article  Google Scholar 

  36. Toh, T.S., Dondelinger, F., Wang, D.: Looking beyond the hype: applied AI and machine learning in translational medicine. EBioMedicine (2019)

    Google Scholar 

  37. Van Esch, P., Black, J.S., Ferolie, J.: Marketing AI recruitment: the next phase in job application and selection. Comput. Hum. Behav. 90, 215–222 (2019)

    Article  Google Scholar 

  38. Verma, S., Bhattacharyya, S.S.: Perceived strategic value-based adoption of big data analytics in emerging economy. J. Enterp. Inf. Manag. (2017)

    Google Scholar 

  39. Wang, Y.S., Li, H.T., Li, C.R., Zhang, D.Z.: Factors affecting hotels’ adoption of mobile reservation systems: a technology-organization-environment framework. Tour. Manag. 53, 163–172 (2016)

    Article  Google Scholar 

  40. Wright, L.T., Robin, R., Stone, M., Aravopoulou, D.E.: Adoption of big data technology for innovation in B2B marketing. J. Bus. Bus. Mark. 26(3–4), 281–293 (2019)

    Article  Google Scholar 

  41. Xu, J., et al.: Translating cancer genomics into precision medicine with artificial intelligence: applications, challenges and future perspectives. Hum. Genet. 138(2), 109–124 (2019)

    Article  Google Scholar 

  42. Zhang, T., Tao, D., Qu, X., Zhang, X., Lin, R., Zhang, W.: The roles of initial trust and perceived risk in public’s acceptance of automated vehicles. Transp. Res. Part C: Emerg. Technol. 98, 207–220 (2019)

    Article  Google Scholar 

  43. Zheng, K., et al.: Ease of adoption of clinical natural language processing software: an evaluation of five systems. J. Biomed. Inform. 58, S189–S196 (2015)

    Google Scholar 

  44. Zhu, K., Weyant, J.P.: Strategic decisions of new technology adoption under asymmetric information: a game-theoretic model. Decis. Sci. 34(4), 643–675 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanthi Radhakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Radhakrishnan, J., Chattopadhyay, M. (2020). Determinants and Barriers of Artificial Intelligence Adoption – A Literature Review. In: Sharma, S.K., Dwivedi, Y.K., Metri, B., Rana, N.P. (eds) Re-imagining Diffusion and Adoption of Information Technology and Systems: A Continuing Conversation. TDIT 2020. IFIP Advances in Information and Communication Technology, vol 617. Springer, Cham. https://doi.org/10.1007/978-3-030-64849-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64849-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64848-0

  • Online ISBN: 978-3-030-64849-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics