Abstract
We consider active inference as a novel approach to the design of synthetic autonomous agents. In order to assess active inference’s feasibility for real-world applications, we developed an agent that controls a ground-based robot. The agent contains a generative dynamic model for the robot’s position and for performance appraisals by an observer of the robot. Our experiments show that the agent is capable of learning the target parking position from the observer’s feedback and robustly steer the robot toward the learned target position.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arduino.cc: Arduino uno rev3. https://store.arduino.cc/arduino-uno-rev3 (2020). Accessed 8 April 2020
Baltieri, M., Buckley, C.L.: An active inference implementation of phototaxis. Artif. Life Conf. Proc. 29, 36–43 (2017). https://doi.org/10.1162/isal_a_011. https://www.mitpressjournals.org/doi/abs/10.1162/isal_a_011
Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017). https://doi.org/10.1137/141000671
Cox, M., van de Laar, T., de Vries, B.: A factor graph approach to automated design of Bayesian signal processing algorithms. Int. J. Approximate Reasoning 104, 185–204 (2019). https://doi.org/10.1016/j.ijar.2018.11.002. http://www.sciencedirect.com/science/article/pii/S0888613X18304298
Edelkamp, S., Schroedl, S., Koenig, S.: Heuristic Search: Theory and Applications. Morgan Kaufmann Publishers Inc., San Francisco (2010)
Ergul, B.: A Real-World Implementation of Active Inference. Master’s Thesis, Eindhoven University of Technology (2020). https://biaslab.github.io/pdf/msc/Ergul-2020-MSc-thesis-A-Real-World-Implementation-of-Active-Inference.pdf
Everett, H.R.: Sensors for Mobile Robots: Theory and Application. A. K. Peters Ltd, Natick (1995)
Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11(2), 127–138 (2010)
Gay, W.: Raspberry Pi Hardware Reference. Apress, Berkeley (2014). https://doi.org/10.1007/978-1-4842-0799-4
Ge, H., Xu, K., Ghahramani, Z.: Turing: a language for flexible probabilistic inference. In: International Conference on Artificial Intelligence and Statistics, AISTATS 2018, 9–11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain, pp. 1682–1690 (2018). http://proceedings.mlr.press/v84/ge18b.html
Koudahl, M.T., de Vries, B.: Batman: Bayesian target modelling for active inference. In: ICASSP-2020 Conference, Barcelona (2020)
van de Laar, T.W., de Vries, B.: Simulating active inference processes by message passing. Front. Robot. AI 6, 20 (2019). https://doi.org/10.3389/frobt.2019.00020. https://www.frontiersin.org/article/10.3389/frobt.2019.00020
Oliver, G., Lanillos, P., Cheng, G.: Active inference body perception and action for humanoid robots. CoRR abs/1906.03022 http://arxiv.org/abs/1906.03022 (2019)
Parallax: Robot shield with arduino. https://www.parallax.com/product/32335 (2020). Accessed 8 April 2020
van de Laar, T.: Automated design of Bayesian signal processing algorithms. Ph.D. Thesis, Eindhoven University of Technology (2019)
Acknowledgements
This work was partly financed by research programmes ZERO and EDL with project numbers P15-06 and P16-25 respectively, which are both (partly) financed by the Netherlands Organisation for Scientific Research (NWO).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Ergul, B., van de Laar, T., Koudahl, M., Roa-Villescas, M., de Vries, B. (2020). Learning Where to Park. In: Verbelen, T., Lanillos, P., Buckley, C.L., De Boom, C. (eds) Active Inference. IWAI 2020. Communications in Computer and Information Science, vol 1326. Springer, Cham. https://doi.org/10.1007/978-3-030-64919-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-64919-7_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-64918-0
Online ISBN: 978-3-030-64919-7
eBook Packages: Computer ScienceComputer Science (R0)