Skip to main content

Learning Where to Park

  • Conference paper
  • First Online:
Active Inference (IWAI 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1326))

Included in the following conference series:

Abstract

We consider active inference as a novel approach to the design of synthetic autonomous agents. In order to assess active inference’s feasibility for real-world applications, we developed an agent that controls a ground-based robot. The agent contains a generative dynamic model for the robot’s position and for performance appraisals by an observer of the robot. Our experiments show that the agent is capable of learning the target parking position from the observer’s feedback and robustly steer the robot toward the learned target position.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arduino.cc: Arduino uno rev3. https://store.arduino.cc/arduino-uno-rev3 (2020). Accessed 8 April 2020

  2. Baltieri, M., Buckley, C.L.: An active inference implementation of phototaxis. Artif. Life Conf. Proc. 29, 36–43 (2017). https://doi.org/10.1162/isal_a_011. https://www.mitpressjournals.org/doi/abs/10.1162/isal_a_011

  3. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017). https://doi.org/10.1137/141000671

    Article  MathSciNet  MATH  Google Scholar 

  4. Cox, M., van de Laar, T., de Vries, B.: A factor graph approach to automated design of Bayesian signal processing algorithms. Int. J. Approximate Reasoning 104, 185–204 (2019). https://doi.org/10.1016/j.ijar.2018.11.002. http://www.sciencedirect.com/science/article/pii/S0888613X18304298

    Article  MathSciNet  MATH  Google Scholar 

  5. Edelkamp, S., Schroedl, S., Koenig, S.: Heuristic Search: Theory and Applications. Morgan Kaufmann Publishers Inc., San Francisco (2010)

    Google Scholar 

  6. Ergul, B.: A Real-World Implementation of Active Inference. Master’s Thesis, Eindhoven University of Technology (2020). https://biaslab.github.io/pdf/msc/Ergul-2020-MSc-thesis-A-Real-World-Implementation-of-Active-Inference.pdf

  7. Everett, H.R.: Sensors for Mobile Robots: Theory and Application. A. K. Peters Ltd, Natick (1995)

    Book  Google Scholar 

  8. Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11(2), 127–138 (2010)

    Article  Google Scholar 

  9. Gay, W.: Raspberry Pi Hardware Reference. Apress, Berkeley (2014). https://doi.org/10.1007/978-1-4842-0799-4

    Book  Google Scholar 

  10. Ge, H., Xu, K., Ghahramani, Z.: Turing: a language for flexible probabilistic inference. In: International Conference on Artificial Intelligence and Statistics, AISTATS 2018, 9–11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain, pp. 1682–1690 (2018). http://proceedings.mlr.press/v84/ge18b.html

  11. Koudahl, M.T., de Vries, B.: Batman: Bayesian target modelling for active inference. In: ICASSP-2020 Conference, Barcelona (2020)

    Google Scholar 

  12. van de Laar, T.W., de Vries, B.: Simulating active inference processes by message passing. Front. Robot. AI 6, 20 (2019). https://doi.org/10.3389/frobt.2019.00020. https://www.frontiersin.org/article/10.3389/frobt.2019.00020

    Article  Google Scholar 

  13. Oliver, G., Lanillos, P., Cheng, G.: Active inference body perception and action for humanoid robots. CoRR abs/1906.03022 http://arxiv.org/abs/1906.03022 (2019)

  14. Parallax: Robot shield with arduino. https://www.parallax.com/product/32335 (2020). Accessed 8 April 2020

  15. van de Laar, T.: Automated design of Bayesian signal processing algorithms. Ph.D. Thesis, Eindhoven University of Technology (2019)

    Google Scholar 

Download references

Acknowledgements

This work was partly financed by research programmes ZERO and EDL with project numbers P15-06 and P16-25 respectively, which are both (partly) financed by the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert de Vries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ergul, B., van de Laar, T., Koudahl, M., Roa-Villescas, M., de Vries, B. (2020). Learning Where to Park. In: Verbelen, T., Lanillos, P., Buckley, C.L., De Boom, C. (eds) Active Inference. IWAI 2020. Communications in Computer and Information Science, vol 1326. Springer, Cham. https://doi.org/10.1007/978-3-030-64919-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64919-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64918-0

  • Online ISBN: 978-3-030-64919-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics